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Abstract. This paper addresses renewal input continuous and discrete time queues with balking and
vacation interruptions. An arriving client may join the system or balk with some state-dependent prob-
ability. Whenever the server finds an empty system, he leaves for a working vacation. During working
vacations, if there are clients to be served at a service completion instant, the server interrupts the work-
ing vacation and switches to regular service period. The embedded Markov chain technique has been
adopted for evaluating pre-arrival epoch probabilities and supplementary variable approach is employed
to evaluate arbitrary instant probabilities. Few performance characteristics and sojourn time distribution
have also been demonstrated. Finally, numerical investigations have been figured out to depict the impact
of the model variables on the performance indices.
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1 Introduction

Queues with server vacations have been considered widely due to their various implementations in trans-
mission systems, manufacturing industries, food industries, etc. Incorporation of various vacation poli-
cies in queueing systems provide more mobility for optimal planning and operation control of the system.
In many real life scenarios, the server can be utilized in different forms with a different service rate dur-
ing the vacation period. Such queueing systems are termed as queues with multiple working vacations
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(MWV ) and were proposed by Servi and Finn [18]. The study of a bulk arrival exponential queue with
MWV has been carried out by Baba [1]. A finite capacity state-dependent general input queue with
MWV was researched by Goswami et al. [6] employing supplementary variable and recursive meth-
ods. A review on queueing systems with working vacations has been conducted by Chandrasekaran et
al. [3]. On the other hand, due to their wide range of applications in numerous fields, queueing models
with working vacations (WV ) in discrete time environment have received extensive study in recent years.
Goswami and Mund [4] used supplementary variable and embedded Markov chain approaches to analyse
a GI/Geo/1/N queue with MWV . The discrete time bulk arrival queue with WV has been considered
by Li et al. [10] employing embedded Markov chain method. The discrete time bulk arrival queueing
system with unreliable server and WV was analysed by Jain et al. [8] using maximum entropy approach.

According to WV rules, the server returns to regular service after a WV completion if there are still
waiting clients in the system. In the real-world scenario, these circumstances seem to be rare. To get over
this restriction, Li and Tian [12] developed the concept of vacation interruption (V I) in an exponential
queue. Li and Tian [13] have used the matrix-geometric approach to analyse the discrete time general
input queue with V I. The generalization of the study of Li and Tian [12] to a renewal input queue with V I
was considered by Li et al. [14]. Zhang and Hou [27] studied a general service queue with V I adopting
the supplementary variable method. The discrete time bulk arrival queue with V I has been analysed by
Shan et al. [21]. Li et al. [11] has explored a Bernoulli schedule vacation queue with V I under discrete
time environment using matrix analytic method. The retrial queue with V I in discrete time environment
has been considered by Shan and Jinting [20] using supplementary variable method. An exponential
queue with V I under Bernoulli schedule has been dealt by Manoharan and Ashok [15]. Rajdurai et
al. [16] explored an unreliable queue with WV and V I under Bernoulli schedule using supplementary
variable technique.

Queueing models wherein clients balk arise in many distinct application domains. Numerous re-
searchers have put their efforts to investigate the influence of client intolerance of waiting in queueing
systems. Further, queueing models with impatient arrivals and server vacations are widely in use due to
their appropriateness in various fields such as telephone switchboard, packet transmission and other no-
table applications. Employing embedded Markov chain together with supplementary variable approach,
Vijaya Laxmi and Jyothsna [23] investigated a finite capacity general input queue with balking and WV .
Suganya [22] analyzed an MX/G(a,b)/1 queue with V I, optional re-service and balking using sup-
plementary variable method. Vijaya Laxmi and Jyothsna [24] computed the stationary probabilities at
different epochs for a discrete time queue with balking and MWV . The impatient actions of arrivals in an
N-policy queue with unreliable server and V I has been studied by Richa [17]. Shakir and Manoharan [19]
considered an impatient client queue with WV using generating functions. Ivo et al. [7] considered a con-
tinuous time queue with two types of impatient clients. Goswami and Mund [5] applied the displacement
operator approach to analyse the general input bulk service queue with client impatience and MWV . Vi-
jaya Laxmi and Kassahun [26] considered the transient study of a multi-server queue with synchronized
MWV and impatient clients. A feedback queue with variant of multiple vacations and impatience has
been researched by Amina et al. [2].

In this article, the analytical analysis of a finite capacity renewal input queue with balking and V I in
continuous and discrete time environments has been done. Such queueing systems have many significant
applications. For example, in the transmission system of emails, Simple Mail Transfer Protocol (SMTP)
is a protocol for the transfer of emails on a TCP/IP network. A picture depicting the SMTP is shown in
Figure 1. SMTP provides the mean of transmission and collection of email messages. When an email
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is sent by a mail client to a mail server using SMTP, a TCP connection is formed. Once the connection
is in place, the program follows SMTP wherein a sender is identified, a recipient is specified and the
email is transferred. In some situations, the messages may be ended up by the sender before reaching the
mail server. When the messages approach the mail server, the first message is selected for transfer and
the rest will enter the buffer. For proper functioning of the mail server, some servicing activities such as
virus scan, spam filtering, etc., are performed. These activities are done during the idle time of the server
on a regular basis. In this context, the buffer, the receiver, ending up of the messages before arriving
at the mail server and the servicing activities correlate to queue, server, balking and vacation policy in
queueing nomenclature, respectively.

To the best of our knowledge, general arrival queues with balking and V I in both continuous and
discrete time environments have not been studied so far. Inspired by the lack of investigations in this
domain and the various practical applications as discussed above, this paper aims at the study of both
GI/M/1 and GI/Geo/1 queues with balking and V I. The finite buffer queue with impatient clients and
Bernoulli-schedule V I can be found in Vijaya Laxmi et al. [25] wherein they have utilized supplementary
variable approach together with recursive technique. However, in the present paper we have analyzed
both GI/M/1/N/WV and GI/Geo/1/N/WV queues with balking and V I using embedded Markov chain
and supplementary variable approaches. Another highlight of the present paper is that the actual sojourn
time analysis has been carried out and is analytically matched with the sojourn time attained from Little’s
rule in both the models. The regular service durations, WV service durations and vacation durations are
presumed to be exponentially and geometrically distributed in the continuous and discrete time models,
respectively. The pre-arrival instant probabilities at steady-state are obtained using embedded Markov
chain technique. Adopting the supplementary variable method the arbitrary epoch distributions at steady-
state are obtained. Different performance characteristics like the mean system size, blocking probability,
mean balking rate, sojourn time analysis, etc., are presented. The parameter impact on the performance
indices is exhibited through few numerical investigations.

The remaining of the article is organized as follows. An overview of the considered continuous and
discrete time queues is depicted in Section 2. In Sections 3 and 4, employing embedded Markov chain
and supplementary variable approaches, respectively, the probability distributions at various instants are
obtained. Few performance metrics and sojourn time analysis for both the models is accomplished in
Section 5. Numerical investigations are displayed in Section 6 followed by conclusions in Section 7.

2 Model description

We examine a general arrival queue with balking and vacation interruptions in both continuous and
discrete time environments. The buffer capacity is taken to be finite (N). In the continuous (discrete) time
model, we presume that the inter-arrival times (i.a.t.) of consecutive arrivals are identically distributed
and independent random variables with pdf (pmf) â(x),x ≥ 0 (âi, i ≥ 1), Laplace-Stieltjes transform
(LST) (probability generating function) A∗(s)(A∗(z)) and mean i.a.t. 1/λ =−A∗(1)(0)(A∗(1)(1)), where
h(1)(0)(h(1)(1)) indicates the derivative of h(x) computed at x = 0 (x = 1). Assume that an arrival on
finding n clients in the system is not compelled to join the queue and may balk with some state-dependent
probability. When n clients exist in the system, let βn denote the probability with which a client joins
the system and β̄n be the probability of balking, where x̄ = 1− x. Furthermore, it is also assumed that
β0 = 1, 0 < βn+1 ≤ βn ≤ 1,1≤ n≤ N−1 and βN = 0.
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Figure 1: Early arrival system

As and when the service facility finds no clients in the system, he exits for a WV . When the service
is completed in WV , if there are clients in the queue to be served, V I occurs; otherwise, the vacation
continues. On the other hand, if there are no clients to be served at a vacation completion epoch, another
WV starts; otherwise, the server resumes regular service. The regular service durations, service durations
in working vacations and vacation durations are presumed to be exponentially (geometrically) distributed
with rates µb, µv and ϕ in the continuous (discrete) time queue, respectively.

In the discrete time queue, the axis of time be plotted as 0,1,2, . . . , t, . . . . The discrete time model is
addressed for an early arrival system (EAS). In this model, a potential arrival may occur in time (t, t+)
and a potential departure in time (t−, t). Figure 1 illustrates the different time instants at which events
take place in an EAS.

The following random variables explain the system state at time t. N̂(t) denotes the total clients in
the system, the remaining i.a.t. is denoted by X̂(t), ς(t) = 0, when the server is in WV and ς(t) = 1,
when the server is busy with regular service.

3 Steady-state probability distributions at pre-arrival instants

For both continuous and discrete time queues under discussion, we compute the pre-arrival epoch prob-
abilities using the embedded Markov chain technique under this section. Let the clients arrive at suc-
cessive time epochs ti(i = 1,2, . . .) and the i.a.t. ti+1− ti be identically distributed and mutually inde-
pendent random variables with common distribution function A(x) . The system state at t−i is denoted as
{N̂(t−i ),ς(t−i )}. This results an embedded Markov chain whose state space is {(k, l), l = 0,1; l≤ k≤N}.
At a pre-arrival epoch, let ω

−
n, j represent the probability of the server in state j with n clients in the system

and is defined as ω
−
n, j = limt→∞ P{N̂(t−i ) = n,ς(t−i ) = j}, j = 0,1; j ≤ n≤ N.
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3.1 Embedded Markov chain analysis

During an i.a.t., let f̂k (k ≥ 0) express the probability of k service completions in the regular service
period and ĝk (k ≥ 0) be the probability that the service time during WV is shorter than the vacation
duration, then a client is served with rate µv and the rest (k− 1) clients are served with rate µb due to
V I. Let ĥk (k≥ 0) denote the probability that the service time during WV is not shorter than the vacation
duration, then the vacation terminates before a service completion and the k clients are served during
regular service period with rate µb. Hence, in the continuous time model, for k ≥ 0, the probabilities
f̂k, ĝk and ĥk are given as

f̂k =
∫

∞

0

(µbx)k

k!
e−µbxdA(x),k ≥ 0, (1)

ĝ0 =
∫

∞

0
e−(ϕ+µv)xdA(x), (2)

ĝk =
∫

∞

0

∫ x

0
µv

(µb(x− t))k−1

(k−1)!
e−((ϕ+µv−µb)t+µbx)dt dA(x),k ≥ 1, (3)

ĥk =
∫

∞

0

∫ x

0
ϕ
(µb(x− t))k

k!
e−((ϕ+µv−µb)t+µbx)dt dA(x),k ≥ 0. (4)

For the discrete time queue, the probabilities f̂k, ĝk and ĥk, for k ≥ 0, are defined as

f̂k =
∞

∑
i=k

âi

(
i
k

)
µ

k
b µ̄

i−k
b ,k ≥ 0, (5)

ĝ0 =
∞

∑
i=1

âiϕ̄
i
µ̄

i
v, (6)

ĝk =
∞

∑
i=max(1,k)

âi

i

∑
l=1

µvµ̄
l−1
v ϕ̄

l−1
(

i− l
k−1

)
µ

k−1
b µ̄

i−l−k+1
b ,k ≥ 1, (7)

ĥk =
∞

∑
i=max(1,k)

âi

i

∑
l=1

µ̄
l
vϕϕ̄

l−1
(

i− l
k

)
µ

k
b µ̄

i−l−k
b ,k ≥ 1. (8)

The one-step transition probability matrix (TPM) P of dimension (2N + 1)× (2N + 1) is obtained by
noticing the system state at two successive embedded points as

P =

[
∆ Θ

ϒ Φ

]
(2N+1)×(2N+1)

,

where

Θ(N+1)×N =


βkĥ0, i f k = l−1,
βk
(
ĝ1 + ĥ1

)
+ β̄kĥ0, i f k = l,

βk
(
ĝk+1−l + ĥk+1−l

)
+ β̄k

(
ĝk−l + ĥk−l

)
, i f k+1 > l, k− l 6= 0,

0, otherwise.

(9)
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ΦN×N =


βk f̂0, i f k = l−1,
βk f̂k+1−l + β̄k f̂k−l, i f k+1 > l, k− l 6= 0,
0, otherwise.

∆(N+1)×(N+1) =


βkĝ0, i f k = l−1,
β̄kĝ0, i f k = l, k ≥ 1,
ψ(k), i f l = 0,
0, otherwise.

ϒN×(N+1) =

{
γ(k), i f l = 0,

0, otherwise.

and ψ(k) = 1−∑
N
l=1 (∆(k, l)+Θ(k, l)) ,γ(k) = 1−∑

N
l=1 Φ(k, l).

Note: One may note that in the above TPM for the continuous time model, the probabilities f̂k, ĝk, ĥk are
taken from (1) to (4) and for the discrete time model f̂k, ĝk, ĥk are considered from (5) to (8).

Let Ω = (ω−0,0, ω
−
1,0, . . . ,ω

−
N,0,ω

−
1,1, . . . ,ω

−
N,1) and e be (2N +1) dimensional unit column vector. To

compute the probabilities ω
−
n, j, j = 0,1; j ≤ n≤ N, we solve the system of equations Ω = ΩP, Ωe = 1

using GTH algorithm given in Latouche and Ramaswami [9]

4 Steady-state probability distributions at arbitrary instants

Under this section, the probability distributions at arbitrary instants for both continuous and discrete time
models are obtained using supplementary variable approach. The steady-state probabilities at outside ob-
server’s observation epoch for the discrete time model are also evaluated in this section. The difference
equations are built utilising the remaining i.a.t as the supplementary variable for the evaluation of arbi-
trary epoch probabilities.

4.1 GI/M/1/N/MWV queue with V I and balking

Let ωn, j(x) = limt→∞ P
{

N̂(t) = n, x ≤ X̂(t) ≤ x+dx, ς(t) = j
}
, j = 0,1; j ≤ n ≤ N, x ≥ 0 at steady-

state. The respective rate probabilities are denoted as ωn, j(0) with the remaining i.a.t. equal to zero
indicating that a client is about to arrive. The Laplace transform of the probabilities are defined as

ω
∗
n, j(s) =

∫
∞

0
e−sx

ωn, j(x)dx, j = 0,1; j ≤ n≤ N.

At an arbitrary instant, let the probability of n clients in the system while the server being in state j be
denoted as ωn, j, j = 0,1; j ≤ n ≤ N. The steady-state differential difference equations are obtained by
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relating the state of the system at two consecutive time instants t and (t +dt) as:

−ω
(1)
0,0 (x) = µvω1,0(x)+µbω1,1(x),

−ω
(1)
n,0 (x) = â(x)

(
βn−1ωn−1,0(0)+ β̄nωn,0(0)

)
− (ϕ +µv)ωn,0(x), 1≤ n≤ N,

−ω
(1)
1,1 (x) = â(x)β̄1ω1,1(0)+µbω2,1(x)+ϕω1,0(x)+µvω2,0(x)−µbω1,1(x),

−ω
(1)
n,1 (x) = â(x)

(
βn−1ωn−1,1(0)+ β̄nωn,1(0)

)
+ϕωn,0(x)+µvωn+1,0(x)+µbωn+1,1(x)−µbωn,1(x),

2≤ n≤ N−1,

−ω
(1)
N,1(x) = â(x)(βN−1ωN−1,1(0)+ωN,1(0))+ϕωN,0(x)−µbωN,1(x).

The following set of equations are obtained by multiplying the aforementioned equations with e−sx and
integrating over x from 0 to ∞.

−sω
∗
0,0(s) = µvω

∗
1,0(s)+µbω

∗
1,1(s)−ω0,0(0), (10)

(ϕ +µv− s)ω
∗
n,0(s) = A∗(s)

(
βn−1ωn−1,0(0)+ β̄nωn,0(0)

)
−ωn,0(0),1≤ n≤ N, (11)

(µb− s)ω
∗
1,1(s) = A∗(s)β̄1ω1,1(0)+µbω

∗
2,1(s)+ϕω

∗
1,0(s)+µvω

∗
2,0(s)−ω1,1(0), (12)

(µb− s)ω
∗
n,1(s) = A∗(s)

(
βn−1ωn−1,1(0)+ β̄nωn,1(0)

)
+ϕω

∗
n,0(s)

+µvω
∗
n+1,0(s)+µbω

∗
n+1,1(s)−ωn,1(0),2≤ n≤ N−1, (13)

(µb− s)ω
∗
N,1(s) = A∗(s)(βN−1ωN−1,1(0)+ωN,1(0))+ϕω

∗
N,0(s)−ωN,1(0). (14)

Summing up Eqs. (10) to (14), we obtain

N

∑
n=0

ω
∗
n,0(s)+

N

∑
n=1

ω
∗
n,1(s) =

(
1−A∗(s)

s

)( N

∑
n=0

ωn,0(0)+
N

∑
n=1

ωn,1(0)

)
.

As s→ 0 and utilizing the normalization condition ∑
N
n=0 ωn,0 +∑

N
n=1 ωn,1 = 1, we get

N

∑
n=0

ωn,0(0)+
N

∑
n=1

ωn,1(0) = λ . (15)

This indicates that the mean arrival rate λ is equal to the mean number of arrivals into the system.

4.1.1 Arbitrary epoch probabilities in terms of pre-arrival epoch probabilities

For j = 0,1; j ≤ n ≤ N, the rate probabilities ωn, j(0) and the pre-arrival instant probabilities ω
−
n, j are

related as

ω
−
n, j =

ωn, j(0)
λ

, j = 0,1; j ≤ n≤ N, (16)

where λ is obtained from (15). Below is a theorem that demonstrates the relationship between pre-arrival
and arbitrary epoch probabilities.
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Theorem 1. The arbitrary epoch probabilities ωn, j, j = 0,1; j ≤ n≤ N and the pre-arrival epoch prob-
abilities are related as:

ωn,0 =
λ

ϕ +µv

(
βn−1ω

−
n−1,0−βnω

−
n,0

)
,1≤ n≤ N, (17)

ω1,1 =
λ

µb (ϕ +µv)

(
µvβ1ω

−
1,0 +ϕω

−
0,0

)
, (18)

ωn,1 =
λβn−1

µb
ω
−
n−1,1 +

λ

µb (ϕ +µv)

(
µvβnω

−
n,0 +ϕβn−1ω

−
n−1,0

)
,2≤ n≤ N, (19)

ω0,0 =1−
N

∑
n=1

(ωn,0 +ωn,1) . (20)

Proof. Setting s = 0 in (11) to (14), using (16) and after simplification we obtain (17) to (19). Finally, to
obtain the only unknown ω0,0, the normalization condition is utilized.

4.2 GI/Geo/1/N/MWV queue with V I and balking

Let the joint probabilities be denoted as

ωn, j(x) = lim
t→∞

P
{

N̂(t) = n, X̂(t) = x, ς(t) = j
}
, j = 0,1; j ≤ n≤ N,x≥ 0

at steady-state. The steady-state difference equations are obtained by relating the state of the system at
two consecutive time instants t and (t +dt) as:

ω0,0(x−1) =ω0,0(x)+µvω1,0(x)+µbω1,1(x)+ âx
(
µvω0,0(0)+ β̄1

(
µvω1,0(0)+µbω1,1(0)

))
,

ωn,0(x−1) =ϕ̄ µ̄v
(
ωn,0(x)+ âx

(
βn−1ωn−1,0(0)+ β̄nωn,0(0)

))
, 1≤ n≤ N,

ω1,1(x−1) =µ̄b
(
ω1,1(x)+ âuβ̄1ω1,1(0)

)
+µb

(
ω2,1(x)+ âx

(
β1ω1,1(0)+ β̄2ω2,1(0)

))
+ϕµ̄v

(
ω1,0(x)

+ âx
(
ω0,0(0)+ β̄1ω1,0(0)

))
+µv

(
ω2,0(x)+ âx

(
β1ω1,0(0)+ β̄2ω2,0(0)

))
,

ωn,1(x−1) =µ̄b
(
ωn,1(x)+ âx

(
βn−1ωn−1,1(0)+ β̄nωn,1(0)

))
+µb

(
ωn+1,1(x)+ âx

(
βnωn,1(0)

+ β̄n+1ωn+1,1(0)
))

+ϕµ̄v
(
ωn,0(x)+ âx

(
βn−1ωn−1,0(0)+ β̄nωn,0(0)

))
+µv

(
ωn+1,0(x)

+ âx
(
βnωn,0(0)+ β̄n+1ωn+1,0(0)

))
,2≤ n≤ N−1,

ωN,1(x−1) =µ̄b
(
ωN,1(x)+ âx

(
βN−1ωN−1,1(0)+ωN,1(0)

))
+ϕµ̄v

(
ωN,0(x)+ âx

(
βN−1ωN−1,0(0)

+ωN,0(0)
))
.

The probability generating function of ωn, j(x) be

ω
∗
n, j(z) =

∞

∑
x=0

ωn, j(x)zx, j = 0,1; j ≤ n≤ N.

Further, at an arbitrary epoch, let ωn, j = ω∗n, j(1), j = 0,1; j ≤ n ≤ N where ωn, j denotes the probability
of n clients in the system with server state j. Multiplying the aforementioned set of equations with zx
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and adding over x, we get the following equations:

(z−1)ω∗0,0(z) =µvω
∗
1,0(z)+µbω

∗
1,1(z)+A∗(z)

(
µvω0,0(0)+ β̄1

(
µvω1,0(0)+µbω1,1(0)

))
−ω0,0(0)−µvω1,0(0)−µbω1,1(0), (21)

(z− ϕ̄ µ̄v)ω
∗
n,0(z) =ϕ̄ µ̄v

(
A∗(z)

(
βn−1ωn−1,0(0)+ β̄nωn,0(0)

)
−ωn,0(0)

)
,1≤ n≤ N, (22)

(z− µ̄b)ω
∗
1,1(z) =µ̄bA∗(z)β̄1ω1,1(0)+µb

(
ω
∗
2,1(z)+A∗(z)

(
β1ω1,1(0)+ β̄2ω2,1(0)

))
+ϕµ̄v

(
ω
∗
1,0(z)+A∗(z)

(
ω0,0(0)+ β̄1ω1,0(0)

))
+µv

(
ω
∗
2,0(z)+A∗(z)

(
β1ω1,0(0)

+ β̄2ω2,0(0)
))
− µ̄bω1,1(0)−µbω2,1(0)−ϕµ̄vω1,0(0)−µvω2,0(0), (23)

(z− µ̄b)ω
∗
n,1(z) =µ̄bA∗(z)

(
βn−1ωn−1,1(0)+ β̄nωn,1(0)

)
+µb

(
ω
∗
n+1,1(z)+A∗(z)

(
βnωn,1(0)

+ β̄n+1ωn+1,1(0)
))

+ϕµ̄v
(
ω
∗
n,0(z)+A∗(z)

(
βn−1ωn−1,0(0)+ β̄nωn,0(0)

))
+µv

(
ω
∗
n+1,0(z)+A∗(z)

(
βnωn,0(0)+ β̄n+1ωn+1,0(0)

))
− µ̄bωn,1(0)

−ϕµ̄vωn,0(0)−µvωn+1,0(0)−µbωn+1,1(0), 2≤ n≤ N−1, (24)

(z− µ̄b)ω
∗
N,1(z) =µ̄bA∗(z)(βN−1ωN−1,1(0)+ωN,1(0))+ϕµ̄v

(
ω
∗
N,0(z)+A∗(z)

(
βN−1ωN−1,0(0)

+ωN,0(0)
))
− µ̄bωN,1(0)−ϕµ̄vωN,0(0). (25)

Adding the above equations yields

N

∑
n=0

ω
∗
n,0(z)+

N

∑
n=1

ω
∗
n,1(z) =

(
A∗(z)−1

z−1

)( N

∑
n=0

ωn,0(0)+
N

∑
n=1

ωn,1(0)

)
.

As z→ 1 and on using the condition ∑
N
n=0 ωn,0 +∑

N
n=1 ωn,1 = 1, the above equation reduces to

N

∑
n=0

ωn,0(0)+
N

∑
n=1

ωn,1(0) = λ . (26)

4.2.1 Arbitrary epoch probabilities in terms of pre-arrival epoch probabilities

The probabilities ω
−
n, j and the rate probabilities ωn, j(0) are related by

ω
−
n, j =

ωn, j(0)
λ

, j = 0,1; j ≤ n≤ N, (27)

where λ is obtained from (26).

Theorem 2. The arbitrary instant probabilities ωn, j, j = 0,1; j ≤ n≤ N, are given by

ωn,0 =
λϕ̄ µ̄v

1− ϕ̄ µ̄v

(
βn−1ω

−
n−1,0−βnω

−
n,0

)
,1≤ n≤ N, (28)

ω1,1 =λβ1ω
−
1,1 +

1
µb

(
λϕµ̄vβ1

1− ϕ̄ µ̄v
ω
−
0,0 +

λ µvβ1

1− ϕ̄ µ̄v
ω
−
1,0

)
, (29)

ωn,1 =λβnω
−
n,1 +

1
µb

(
λ µ̄bβn−1ω

−
n−1,1 +

λϕµ̄vβn−1

1− ϕ̄ µ̄v
ω
−
n−1,0 +

λ µvβn

1− ϕ̄ µ̄v
ω
−
n,0

)
,2≤ n≤ N, (30)

ω0,0 =1−
N

∑
n=1

(ωn,0 +ωn,1) . (31)
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Proof. Setting z = 1 in (22) to (25), utilizing (27) yields (28) to (30) after simplifications. The unknown
ω0,0 is derived from the normalization condition.

4.2.2 Outside observer’s observation epoch probabilities

For an EAS, an outside observer’s observation instant falls in a time interval after a potential arrival and
before a potential departure. At an outside observer’s observation instant, for j = 0,1; j ≤ n ≤ N,ωo

n, j
denote the probability of n in the system with the server being in j state . Noticing the outside observer’s
observation instants and arbitrary instants displayed in Fig. 1 yields

ω0,0 =ω
o
0,0 +µvω

o
1,0 +µbω

o
1,1, (32)

ωn,0 =ϕ̄ µ̄vω
o
n,0,1≤ n≤ N, (33)

ωn,1 =µ̄bω
o
n,1 +µbω

o
n+1,1 +ϕ

(
µ̄vω

o
n,0 +µvω

o
n+1,0

)
+ ϕ̄µvω

o
n+1,0, 1≤ n≤ N−1, (34)

ωN,1 =µ̄bω
o
N,1 +ϕµ̄vω

o
N,0. (35)

Theorem 3. The outside observer’s observation epoch probabilities at steady-state are given as

ω
o
n,0 =

λ

1− ϕ̄ µ̄v

(
βn−1ω

−
n−1,0−βnω

−
n,0

)
, 1≤ n≤ N, (36)

ω
o
1,1 =

λ

µb (1− ϕ̄ µ̄v)

(
ϕµ̄vω

−
0,0 +µvβ1ω

−
1,0

)
, (37)

ω
o
n,1 =

λ

µb

(
βn−1ω

−
n−1,1 +

ϕµ̄v

1− ϕ̄ µ̄v
βn−1ω

−
n−1,0 +

µv

1− ϕ̄ µ̄v
βnω

−
n,0

)
, 2≤ n≤ N, (38)

ω
o
0,0 =1−

N

∑
n=1

(
ω

o
n,0 +ω

o
n,1
)
. (39)

Proof. Solving Eqs. (33) to (35) and using (28) to (30), one can easily obtain (36) to (38). ωo
0,0 is

evaluated using ∑
N
n=0 ωo

n,0 +∑
N
n=1 ωo

n,1 = 1.

The evaluation of steady-state probability distributions at different epochs is thus complete.

5 Performance characteristics

The mean number of clients in the system (E[L]) for both the models and the mean number of clients
in the system at an outside observer’s observation epoch (E[Lo]) (only for the discrete time queue) are,
respectively, given by

E[L] =
N

∑
n=1

n(ωn,0 +ωn,1) ; E[Lo] =
N

∑
n=1

n
(
ω

o
n,0 +ω

o
n,1
)
.

The blocking probability (Pl) and the mean balking rate (BR) are, respectively,

Pl = ω
−
N,0 +ω

−
N,1; BR =

N

∑
n=1

λβ̄n

(
ω
−
n,0 +ω

−
n,1

)
.
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Utilizing Little’s rule, the mean sojourn time of a client in the system for the continuous time queue (Wc)

and for the discrete time queue (Wd) are obtained as Wc =
E[L]
λ ′ ,Wd = E[Lo]

λ ′ , where λ ′ = λ (JR) is the
effective arrival rate and JR = ∑

N
n=0 βnω

−
n,0 +∑

N
n=1 βnω

−
n,1 is the mean joining rate.

Substituting E[L] in Wc, using Eqs. (17) to (19) and after simplification, we get

Wc =
1

JR

(N−1

∑
n=1

βnω
−
n,1

(
n+1

µb

)
+

N−1

∑
n=0

βnω
−
n,0

(
(n+1)ϕ +nµv +µb

µb (ϕ +µv)

))
. (40)

Similarly, substituting E[Lo] in Wd , using (36) to (38) yields

Wd =
1

JR

(N−1

∑
n=1

βnω
−
n,1

(
n+1

µb

)
+

N−1

∑
n=0

βnω
−
n,0

(
(n+1)ϕµ̄v +nµv +µb

µb (1− ϕ̄ µ̄v)

))
. (41)

5.1 Sojourn time analysis

The sojourn time analysis under the FCFS queue discipline is studied here. Upon arrival, a client may
see the system in any of the conditions stated below.

• n(1 ≤ n ≤ N−1) clients in the system with the server being busy with regular service. In such a
situation, if an arriving client becomes a part of the queue with probability βn then it has to wait
until (n+1) departures during regular service.

• n(0≤ n≤ N−1) clients in the system with the server in WV , then

– if the service time during WV is shorter than the vacation duration, then a non-balking client
has to wait until one departure in WV and n departures in regular service period due to V I.

– if the service time during WV is not shorter than the vacation duration, then a non-balking
client need to wait until n+1 departures in regular service due to vacation completion.

In the continuous time model, let W ∗ac(s) and Wac be the LST of the steady-state sojourn time distribu-
tion and the mean sojourn time in the system, respectively. Taking into account all of the aforementioned
conditions, the LST of the sojourn time is obtained as

W ∗ac(s) =
1

JR

(N−1

∑
n−1

βnω
−
n,1

(
µb

µb + s

)n+1

+
N−1

∑
n=0

βnω
−
n,0

((
µv

ϕ +µv + s

)(
µb

µb + s

)n

+

(
ϕ

ϕ +µv + s

)(
µb

µb + s

)n+1))
.

Thus, the steady-state mean sojourn time is given by

Wac =
1

JR

(N−1

∑
n=1

βnω
−
n,1

(
n+1

µb

)
+

N−1

∑
n=0

βnω
−
n,0

(
(n+1)ϕ +nµv +µb

µb (ϕ +µv)

))
.

It should be noticed that the mean sojourn time (Wac) obtained through the analysis above and the mean
sojourn time estimated using Little’s rule (40) are identical.
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For the discrete time model, let W ∗ad(z) and Wad be the z-transform of the sojourn time distribution and
the mean sojourn time at steady-state. Combining all the possible cases discussed earlier, the z-transform
of the sojourn time in the discrete time is given by

W ∗ad(z) =
1

JR

(N−1

∑
n−1

βnω
−
n,1

(
µbz

1− µ̄bz

)n+1

+
N−1

∑
n=0

βnω
−
n,0

((
µvz

1− ϕ̄ µ̄vz

)(
µbz

1− µ̄bz

)n

+

(
ϕµ̄vz

1− ϕ̄ µ̄vz

)(
µbz

1− µ̄bz

)n+1))
.

Hence, at steady-state, the average sojourn time for the discrete time model is

Wad =
1

JR

(N−1

∑
n=1

βnω
−
n,1

(
n+1

µb

)
+

N−1

∑
n=0

βnω
−
n,0

(
(n+1)ϕµ̄v +nµv +µb

µb (1− ϕ̄ µ̄v)

))
.

Note that the average sojourn time (Wad) obtained through analysis for the discrete time model also
matches with the one computed using Little’s rule (41).

6 Numerical investigations

Various numerical simulations to demonstrate the impact of the model parameters on the performance
characteristics are presented under this section. The capacity of the system is presumed to be N = 10
while the balking function is considered as βn = 1−n/(N +1),1≤ n≤ N−1 with the assumption that
β0 = 1, βN = 0. The arbitrary choice of the model parameters for the continuous time queue is: λ =
1.9, µb = 2.5,µv = 2.1,ϕ = 1.0 and for the discrete time queue is: λ = 0.4, µb = 0.5,µv = 0.2,ϕ = 0.1.
The distribution of number of clients in the system at different epochs for exponential and geometric
i.a.t. distributions is presented in Table 1 along with the performance measures.

The influence of µb on the mean balking rate (BR) and on the mean joining rate (JR) is presented in
Figure 2 for distinct values of λ when the i.a.t. follow Erlang-4 distribution. The figure illustrates that
for fixed λ , as µb increases BR decreases whereas JR increases which is coherent with the fact that as µb
increases, the mean system size decreases and hence, the arriving clients tend to join the queue resulting
in the increase of JR and decrease of BR. Further, for fixed µb, rise in λ results in an increase in BR and
a decrease in JR as expected.

In Figure 3, one may observe the effect of the arrival rate (λ ) on E[L] for the continuous time model
with balking and without balking when the i.a.t. follow deterministic distribution. With the growth of λ

an increase is observed in E[L] in both the models. Further, the mean system size is more in the model
without balking in contrast to the model with balking.

Figure 4 depicts the impact of N on Pl in the discrete time queueing model for different i.a.t. distri-
butions. The i.a.t. distributions are taken as geometric, deterministic and arbitrary. From the figure, it is
clear that Pl decreases with the rise in N for any i.a.t. distribution which agrees with our intuition.

The consequence of λ and ϕ on the mean sojourn time in the discrete time model is displayed in
Figure 5 when the i.a.t. are geometrically distributed. The figure depicts that as λ rises the mean sojourn
time also rises for any ϕ . Further, with the growth of ϕ , Wd decreases because of the fact that as ϕ

increases the vacation time depletes and the server resumes regular service wherein service is provide
with rate µb > µv.



Continuous and discrete time renewal input queues with balking and vacation interruptions 581

Table 1: The distribution of the number of clients in the system.

n M/M/1/10 Geo/Geo/1/10
ω
−
n,0 = ωn,0 ω

−
n,1 = ωn,1 ω

−
n,0 = ωn,0 ω

−
n,1 = ωn,1 ωo

n,0 ωo
n,1

0 0.315769 – 0.221463 – 0.132878 –
1 0.124286 0.135585 0.117717 0.175642 0.163496 0.111772
2 0.046122 0.140805 0.059772 0.172842 0.083016 0.180145
3 0.015998 0.102796 0.028776 0.112402 0.039966 0.136270
4 0.005130 0.061351 0.013010 0.056627 0.018069 0.074912
5 0.001499 0.030893 0.005455 0.023032 0.007576 0.032421
6 0.000392 0.013099 0.002086 0.007635 0.002896 0.011272
7 0.000089 0.004585 0.000709 0.002051 0.000985 0.003141
8 0.000017 0.001277 0.000207 0.000437 0.000288 0.000687
9 0.000002 0.000266 0.000049 0.000071 0.000068 0.000113
10 0.000000 0.000037 0.000009 0.000007 0.000013 0.000012

E[L] = 1.544810, E[L] = 1.687150,E[Lo] = 2.025799,
Pl = 0.000037, Pl = 0.000016,
BR = 0.266837,JR = 0.859559, BR = 0.061351,JR = 0.846621,
Wac =Wc = 0.945901 Wad =Wd = 5.982010
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Figure 2: Influence of µb on BR and JR in the continuous time model.
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Figure 3: Effect of λ on E[L] for the continuous time
model.
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Figure 4: N versus Pl for the discrete time model.
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Figure 6 shows the effect of the service rates µb and µv on the mean system size (E[L]) when the
i.a.t. are geometrically distributed. The mean system size decreases with the increase of both µb and µv.
However, the decrease in E[L] with the increase of µb is steep in comparison with the decrease in E[L]
with µv.

7 Conclusions

The current article presents the study of a finite buffer general input queue with balking and vacation
interruption in both continuous and discrete time environments. The models under consideration might
be applied to numerous real-time systems including contact centres, communications networks, etc. A
transfer model of an email system (SMTP) is offered as a potential application of the queueing systems
under consideration. The discrete time model has been discussed for the early arrival system. We have
obtained the steady-state pre-arrival epoch probabilities in both the systems using embedded Markov
chain technique. The arbitrary epoch probabilities at steady-state have been expressed explicitly in terms
of the pre-arrival epoch probabilities using supplementary variable technique. The steady-state outside
observer’s observation epoch probabilities for the discrete time model are also expressed in terms of
the pre-arrival epoch probabilities. Different performance characteristics such as the the mean system
size, blocking probability, sojourn time using Little’s rule, etc., have been presented. The study of the
mean sojourn time in the system is also carried out and matched analytically with the one obtained using
Little’s rule. Further extensions of the present models can be continuous and discrete time queues with
balking and variant working vacations.
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