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Abstract. We develop a robust uniformly convergent numerical scheme for singularly perturbed time
dependent Burgers-Huxley partial differential equation. We first discretize the time derivative of the
equation using the Crank-Nicolson finite difference method. Then, the resulting semi-discretized non-
linear ordinary differential equations are linearized using the quasilinearization technique, and finally,
design a fitted operator upwind finite difference method to resolve the layer behavior of the solution in
the spatial direction. Our analysis has shown that the presented method is second order parameter uni-
form convergent in time and first order in space. Numerical experiments are conducted to validate the
theoretical results.
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1 Introduction

In this article, we examine the numerical solution of the following singularly perturbed time dependent
Burgers-Huxley equation on the domain D≡Ω× (0,T ]≡ (0,1)× (0,T ]

∂u
∂ t +Lεu(x, t) = 0, (x, t) ∈ D,

u(x,0) = f (x), x ∈Ω,

u(0, t) = h0(t), u(1, t) = h1(t), t ∈ [0,T ],

(1)
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where
Lεu(x, t)≡−εuxx +αuux−β (1−u)(u− γ)u,

0 < ε � 1, α ≥ 0, β ≥ 0, γ ∈ (0,1) are real parameters, and the prescribed functions h0(t), h1(t) and
f (x) are sufficiently smooth and satisfy the compatibility conditions h0(0) = f (0) and h1(0) = f (1).
This equation was investigated by Satsuma [28] in 1986. It describes the interaction between reaction
mechanism, convection effect and diffusion transport. It is the combination of Burgers [8] and Hodgkin-
Huxley [14] equations. They have various applications in nonlinear physics.

For ε = 1, [1,2,32] presented a number of numerical techniques that can be used to solve the Burgers-
Huxley equation in the framework of nonstandard and exponential finite difference methods. The authors
analyzed the performance of the different techniques relative to various combinations of parameters
involved. However, these methods cannot be said to be parameter-uniform as they are only designed for
the case ε = 1.

When the perturbation parameter ε → 0 and for suitable values of α and β , the problem (1) has a
unique solution u(x, t) which exhibits one or two boundary layer(s) [17].

The singularly perturbed Burgers-Huxley problem (1) models various situations that occur in applied
mathematics and engineering such as in population genetics [3], fluid mechanics [4], turbulence flow [6],
nerve propagation and wall in liquid crystals [29], and shock waves [31]. In order to solve the problem
(1), asymptotic expansion methods were proposed by several scholars, see for instance [28–30]. But,
there are difficulties in finding the appropriate asymptotic expansions in the inner and the outer regions. It
is, therefore, necessary to develop numerical methods that generate better approximations of the solution.

In the last few decades several standard/classical numerical methods have been developed to solve
the Burgers-Huxley equation. Some of these methods are the Adomian decomposition methods [13,
15], finite difference methods [25, 27], finite element methods [5, 18, 23, 24], and spectral methods [10,
16]. However, these standard numerical methods lead to severe restrictions on the mesh size due to the
presence of boundary layer(s) to attain stability for small values of the perturbation parameter ε . To avoid
these restrictions, parameter uniform convergent numerical schemes are constructed. These methods are
known as fitted numerical methods [22] and are categorized into fitted operator methods (FOMs) and
fitted mesh methods (FMMs).

In recent studies various parameter uniformly convergent methods have been developed to solve (1)
using FMMs. To cite a few, Kaushik et al. [17] developed a uniform convergent scheme for the problem
(1). They used the backward-Euler scheme to discretize the temporal direction on a uniform mesh and an
upwind finite difference scheme for the spatial discretization on the Shishkin mesh. They obtained first
order in the time and almost first order in the space except for a logarithmic factor. Kadalbajoo et al. [12]
modified this scheme using a hybrid finite difference operator to discretize the space derivatives on a
Shishkin mesh. They obtained first order parameter uniform in time direction. For the space direction,
they have shown first order convergence on the outside and almost second order uniform convergence
inside the boundary layer regions.

In [19], Liu et al. used classical backward-Euler finite difference for the time derivative on a uniform
mesh and an upwind finite difference scheme for the space derivative on an equidistributed grid to de-
velop an ε-uniform convergent scheme for (1). Their analysis has shown a first order rate of convergence
both in time and space.

Up to the best of our knowledge, the finite difference schemes available in the literature for the
singularly perturbed Burgers-Huxley equation (1) are based on fitted mesh methods and are first order
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uniformly convergent both in time and space up to a logarithmic factor. It is known that the logarithm
factor alters the convergence rate and the accuracy of such methods (especially those built on Shishkin
type meshes) [22]. The FOMs, on the other hand, enjoy a high nodal accuracy.

In this work, we present an ε-uniform convergent numerical method for solving the problem (1).
The proposed method utilizes the Crank-Nicolson scheme for the time discretization and a FOM for the
space discretization. This guarantees that the time discretization is second order accurate while the space
discretization is (exactly) first order accurate. The nonlinearity of the problem will be dealt with via the
Newton-Kantorovich quasilinearization technique [7].

Remark 1. Throughout the paper C denotes a generic positive constant which is independent of the
parameter ε and the mesh sizes. C2,1(D̄) denotes a collection of functions Φ(x, t) on D̄ which are once
differentiable in time and twice differentiable in space. Also, ‖ · ‖ is used as the maximum norm.

2 A priori bounds

Here, we present a priori bounds for the solution of the continuous problem (1) and its time derivatives
which are important for the convergence analysis of the time discrete scheme. First, let us present the
following maximum principle for the operator ∂

∂ t +Lε defined in (1).

Lemma 1. Let Φ(x, t)∈C2,1(D̄). If Φ(x, t)≥ 0, ∀(x, t)∈ ∂D (boundary of D) and
(

∂

∂ t +Lε

)
Φ(x, t)≥ 0,

∀(x, t) ∈ D, then Φ(x, t)≥ 0, ∀(x, t) ∈ D̄.

Proof. See the proof in [12, Lemma 1].

This lemma leads to the following uniform stability result [12].

Lemma 2. Let u(x, t) be the solution of (1), then ‖u‖D̄ ≤ ‖u‖∂D.

Lemma 3. The bounds for the solution u(x, t) of (1) and its time derivatives are given by∣∣∣∣∂ iu(x, t)
∂ t i

∣∣∣∣≤C, ∀(x, t) ∈ D, for i = 0,1,2.

Proof. Refer to [19, Lemma 2.3].

3 Time semi-discretization

The time domain [0,T ] is discretized into N number of uniform meshes, each of length ∆t = T/N. Let
0 = t0, tN = T, and tn = n∆t, n = 0,1,2, . . . ,N, be the mesh points.

To approximate the time derivative term of the Burgers-Huxley equation (1), we use the Crank-
Nicolson finite difference, which gives a system of two point nonlinear boundary value problems

u0 = u(x,0) = f (x), x ∈Ω,

(I + ∆t
2 L̄ε)un+1 = (I− ∆t

2 L̄ε)un,

un+1(0) = h0(tn+1), un+1(1) = h1(tn+1), n = 0,1, . . . ,N−1,

(2)
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where
L̄εun+1(x)≡−εun+1

xx +αun+1un+1
x −β (1−un+1)(un+1− γ)un+1,

and un(x) is the semi-discrete approximation to the exact solution u(x, tn) of (1) at time level tn = n∆t, 0≤
n≤ N−1.

3.1 Convergence analysis for the time semi-discretization

In order to analyze the uniform convergence of the solution un(x) of (2) to the exact solution u(x, tn),
we will do the stability analysis and the consistency result of the scheme (2). First, let us observe the
following semi-discrete maximum principle for the operator I + ∆t

2 L̄ε defined in (2).

Lemma 4. If Φn+1(0) ≥ 0, Φn+1(1) ≥ 0 and (I + ∆t
2 L̄ε)Φ

n+1(x) ≥ 0 for all x ∈ Ω, then Φn+1(x) ≥ 0
for all x ∈ Ω̄.

Proof. Suppose there is x∗ ∈ Ω̄ such that Φn+1(x∗) = min
x∈Ω̄

Φn+1(x) < 0. From the given hypothesis and

second derivative test, we have x∗ 6= 0, x∗ 6= 1, Φn+1
x (x∗) = 0 and Φn+1

xx (x∗)> 0. Then, from (2) we have

(I +
∆t
2

L̄ε)Φ
n+1(x∗) = Φ

n+1(x∗)+
∆t
2
(
−εΦ

n+1
xx +αΦ

n+1
Φ

n+1
x −β (1−Φ

n+1)(Φn+1− γ)Φn+1)(x∗)
= Φ

n+1(x∗)+
∆t
2
(
−εΦ

n+1
xx (x∗)−β (1−Φ

n+1(x∗))(Φn+1(x∗)− γ)Φn+1(x∗)
)

< 0,

which contradicts the given assumption and thus Φn+1(x)≥ 0 for all x ∈ Ω̄.

This maximum principle leads to the following stability result

‖(I + ∆t
2

L̄ε)
−1‖ ≤C. (3)

The local truncation error en+1 associated to the semi-discrete scheme (2) is given by en+1 = u(x, tn+1)−
ûn+1(x), where ûn+1(x) is the solution of the following boundary value problem{

(I + ∆t
2 L̄ε)ûn+1 = (I− ∆t

2 L̄ε)u(x, tn), x ∈Ω,

ûn+1(0) = h0(tn+1), ûn+1(1) = h1(tn+1), n = 0,1, . . . ,N−1.
(4)

Lemma 5 (Local error estimate). Estimate of the local error en+1 is given by

‖en+1‖ ≤C∆t3. (5)

Proof. Since the solution u(x, t) of (1) is sufficiently smooth, by using Taylor series expansion, we have

u(x, tn) = u(x, tn+1)−∆tut(x, tn+ 1
2
)− ∆t3

24
uttt(x,η), (6)

for some η ∈ [tn, tn+1], and u(x, tn) is the exact solution of (1) at nth time level.
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Using (2), Eq. (6) leads to

u(x, tn) = u(x, tn+1)+
∆t
2
(
L̄εu(x, tn+1)+ L̄εu(x, tn)

)
− ∆t3

24
uttt(x,η). (7)

This implies that

(I− ∆t
2

L̄ε)u(x, tn) = (I +
∆t
2

L̄ε)u(x, tn+1)−
∆t3

24
uttt(x,η). (8)

Subtracting (4) from (8) suggests that en+1 is the solution of the boundary value problem(
I +

∆t
2

L̄ε

)
en+1 = O(∆t3), (9)

en+1(0) = 0, en+1(1) = 0.

Using the stability result (3), we obtain ‖en+1‖ ≤C∆t3.

The global error of the time semi-discretization is given by

En+1 = u(x, tn+1)−un+1(x) =
n+1

∑
i=1

ei.

Using the local error estimate result (5) and triangular inequality the following consistency result follows.

Theorem 1 (Global error estimate). Estimate of the global error En+1 is given by

‖En+1‖ ≤C∆t2, n∆t ≤ T. (10)

Therefore, the semi-discrete scheme (2) is a second order uniformly convergent in time.

3.2 Quasilinearization

The nonlinear boundary value problem (2) can be linearized using Newton-Kantorovich quasilineariza-
tion approach [7] and followed by simplification yields the following sequence of linear boundary value
problems

u0,( j+1) = f (x), x ∈ Ω̄

−εun+1,( j+1)
xx +αun+1,( j)un+1,( j+1)

x +
( 2

∆t +αun+1,( j)
x (x)

+β
(
3[un+1,( j)]2−2(1+ γ)un+1,( j)+ γ

))
un+1,( j+1)

= εun,( j+1)
xx +

(
2
∆t −αun,( j+1)

x

)
un,( j+1)+β

(
1−un,( j+1))(un,( j+1)− γ

)
un,( j+1)

+
(
αux

n+1,( j)+β
(
2[un+1,( j)]2− (1+ γ)un+1,( j)

))
un+1,( j) x ∈Ω,

un+1,( j+1)(0) = h0(tn+1), un+1,( j+1)(1) = h1(tn+1), n = 0,1, . . . ,N−1,

(11)

where un+1,( j) is the jth nominal solution of the semi-discrete scheme (2) with initial guess un+1,(0) and
j = 0,1,2, . . ., is the iteration index. It is shown in [17] that the convergence of the Newton-Kantorovich
quasilinearization (11) is quadratic.
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For simplicity, we use the following notations

Un+1(x) = un+1,( j+1)(x),

a( j)(x) = αun+1,( j)(x),

b( j)(x) =
2
∆t

+αun+1,( j)
x (x)+β

(
3[un+1,( j)]2−2(1+ γ)un+1,( j)+ γ

)
,

F( j)(x) = εun,( j+1)
xx +

(
2
∆t
−αun,( j+1)

x

)
un,( j+1)+β

(
1−un,( j+1))(un,( j+1)− γ

)
un,( j+1)

+
(

αux
n+1,( j)+β

(
2[un+1,( j)]2− (1+ γ)un+1,( j)

))
un+1,( j).

Using the above notations, (11) can be written as
U0(x) = f (x),
L N

ε Un+1(x) = F( j)(x), x ∈Ω,

Un+1(0) = h0(tn+1), Un+1(1) = h1(tn+1),

(12)

where
L N

ε Un+1(x) =−εUn+1
xx +a( j)(x)Un+1

x +b( j)(x)Un+1.

Let p and q be positive numbers such that a( j)(x)≥ p > 0, b( j)(x)≥ q > 0.
Assuming that a( j)(x), b( j)(x) and F( j)(x) are sufficiently smooth functions, then the linear singularly

perturbed boundary value problem (12) has a unique solution that exhibits a boundary layer at x= 1 when
ε → 0 (See in [22]).

In the uniform convergence analysis of the fully-discrete problem, we require the following asymp-
totic behavior of the solution Un+1(x) of (12) and its derivatives in space.

Lemma 6. Let Un+1(x) be the solution of the linearized semi-discrete scheme (12), the bounds of
Un+1(x) and its derivatives are∣∣∣∣∂ iUn+1

∂xi

∣∣∣∣≤C
(
1+ ε

−i exp(−p(1− x)/ε)
)
, x ∈ Ω̄, i = 0,1,2,3. (13)

Proof. The proof can be found in [9].

4 The spatial discretization

The spatial domain Ω = [0,1] is discretized into M equal number of mesh elements each of length
h = 1/M . This gives the spatial mesh

Ω̄
M = {xm = mh, m = 0,1,2, . . . ,M, x0 = 0, xM = 1, h = 1/M} ,

where the xm’s are mesh points. The semi-discrete problem (12) can be fully-discretized using the non-
standard finite difference methodology of Mickens [20] as follows

U0
m = f (xm), 1≤ m≤M−1,

L M,N
ε Un+1

m ≡−ε

[
Un+1

m+1−2Un+1
m +Un+1

m−1
ψ2

m(h,ε)

]
+a( j)

m

[
Un+1

m −Un+1
m−1

h

]
+b( j)

m Un+1
m = F( j)

m , 1≤ m≤M−1,

Un+1
0 = h0(tn+1), Un+1

M = h1(tn+1),
(14)
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where the denominator function ψm is

ψ
2
m(h,ε) =

hε

a( j)
m

(
exp(

a( j)
m h
ε

)−1

)
, m = 1,2, . . . ,M−1.

For details about how this denominator function is derived, interested readers may refer to [21]. Here,
Un+1

m is the numerical approximation of the exact solution u(xm, tn+1) at j+1 iteration and

a( j)
m = a( j)(xm), b( j)

m = b( j)(xm), F( j)
m = F( j)(xm).

The fully-discretized equation (14) can be written as:
U0

m = f (xm), 1≤ m≤M−1,
En+1

m Un+1
m−1 +Fn+1

m Un+1
m +Gn+1

m Un+1
m+1 = Hn+1

m , 1≤ m≤M−1,
Un+1

0 = h0(tn+1), Un+1
M = h1(tn+1),

(15)

where

En+1
m =− ε

ψ2
m
− a( j)

m

h
,

Fn+1
m =

2ε

ψ2
m
+

a( j)
m

h
+b( j)

m ,

Gn+1
m =− ε

ψ2
m
,

Hn+1
m =

ε

ψ2
m
(Un

m−1−2Un
m +Un

m+1)+

(
2
∆t
−α

(Un
m−Un

m−1)

h

)
Un

m +β (1−Un
m)(U

n
m− γ)Un

m

+

(
α
(un+1,( j)

m −un+1,( j)
m−1 )

h
+β

(
2[un+1,( j)

m ]2− (1+ γ)un+1,( j)
m

))
un+1,( j)

m .

Eq. (15) is a tridiagonal system which can be solved using Thomas Algorithm.

5 Convergence analysis of the fully-discrete scheme

The fully-discrete finite difference operator L M,N
ε of (14) satisfies the following maximum principle.

Lemma 7. Let Φn+1
m , m= 0,1, . . . ,M be discrete mesh functions. If Φ

n+1
0 ≥ 0, Φ

n+1
M ≥ 0 and L M,N

ε Φn+1
m ≥

0, for 1≤ m≤M−1, then Φn+1
m ≥ 0, for 0≤ m≤M.

Proof. Assume there is m∗ such that Φ
n+1
m∗ = min

0≤m≤M
Φn+1

m < 0. From the given hypothesis, we have

m∗ 6= 0, m∗ 6= M, Φ
n+1
m∗+1−Φ

n+1
m∗ ≥ 0, and Φ

n+1
m∗−1−Φ

n+1
m∗ ≥ 0. Then, from (14), we have

L M,N
ε Φ

n+1
m∗ =−ε

[
Φ

n+1
m∗+1−2Φ

n+1
m∗ +Φ

n+1
m∗−1

ψ2
m∗

]
+a( j)

m∗

[
Φ

n+1
m∗ −Φ

n+1
m∗−1

h

]
+b( j)

m∗Φ
n+1
m∗

=−ε

[
Φ

n+1
m∗+1−Φ

n+1
m∗ +Φ

n−1
m∗−1−Φ

n+1
m∗

ψ2
m∗

]
+a( j)

m∗

[
Φ

n+1
m∗ −Φ

n+1
m∗−1

h

]
+b( j)

m∗Φ
n+1
m∗

< 0,
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which contradicts the given assumption L M,N
ε Φn+1

m ≥ 0 for 1 ≤ m ≤ M− 1 and thus Φn+1
m ≥ 0, for

0≤ m≤M.

The following fully-discrete stability result is important to prove the ε-uniform convergence of the
proposed method.

Lemma 8. Let Φn+1
m , m = 0,1, . . . ,M be any mesh functions such that Φ

n+1
0 = Φ

n+1
M = 0, then

|Φn+1
m | ≤ 1

q
max

1≤i≤M−1
|L M,N

ε Φ
n+1
i |, 0≤ m≤M,

where b( j)(xm)≥ q > 0.

Proof. Define

[Ψ±]n+1
m =

1
q

max
1≤i≤M−1

|L M,N
ε Φ

n+1
i |±Φ

n+1
m .

Then, we have

[Ψ±]n+1
0 =

1
q

max
1≤i≤M−1

|L M,N
ε Φ

n+1
i |±Φ

n+1
0 =

1
q

max
1≤i≤M−1

|L M,N
ε Φ

n+1
i | ≥ 0,

[Ψ±]n+1
M =

1
q

max
1≤i≤M−1

|L M,N
ε Φ

n+1
i |±Φ

n+1
M =

1
q

max
1≤i≤M−1

|L M,N
ε Φ

n+1
i | ≥ 0,

and, for m = 1,2, . . . ,M−1,

L M,N
ε [Ψ±]n+1

m = L M,N
ε

(1
q

max
1≤i≤M−1

|L M,N
ε Φ

n+1
i |±Φ

n+1
m
)

=
b( j)(xm)

q
max

0≤m≤M
|L M,N

ε Φ
n+1
m |±L M,N

ε Φ
n+1
m

≥ max
0≤m≤M

|L M,N
ε Φ

n+1
m |±L M,N

ε Φ
n+1
m , since b( j)(xm)≥ q

≥ 0.

Here, [Ψ±]n+1
m satisfies the hypothesis of the fully-discrete maximum principle given in Lemma 7, hence

[Ψ±]n+1
m ≥ 0, 0≤ m≤M. This gives the required result

|Φn+1
m | ≤ 1

q
max

1≤i≤M−1
|L M,N

ε Φ
n+1
i |, 0≤ m≤M.

Hence, the proof is complete.

Theorem 2 (Error estimate in the spatial direction). Let Un+1(x) be the solution of the semi-discrete
problem (12) and Un+1

m be the solution of the fully-discrete problem (14). Then, the error estimate is
given by ∣∣Un+1(xm)−Un+1

m

∣∣≤Ch, 0≤ m≤M.
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Proof. The truncation error of the fully-discrete scheme (14) is given by

L M,N
ε

(
Un+1(xm)−Un+1

m
)
=
[
−ε(Un+1)′′(xm)+a( j)(xm)(Un+1)′(xm)+b( j)(xm)Un+1(xm)

]
−
[
−ε

h2

ψ2
m

D+D−Un+1(xm)+a( j)(xm)D−Un+1(xm)+b( j)(xm)Un+1(xm)

]
= ε(

h2

ψ2
m

D+D−− d2

dx2 )U
n+1(xm)+a( j)(xm)(

d
dx
−D−)Un+1(xm), (16)

where

D−Un+1(xm) =
Un+1(xm)−Un+1(xm−1)

h
, D+Un+1(xm) =

Un+1(xm+1)−Un+1(xm)

h
,

D+D−Un+1(xm) =
Un+1(xm+1)−2Un+1(xm)+Un+1(xm−1)

h2 .

Using triangular inequality, equation (16) leads to

∣∣∣L M,N
ε (Un+1(xm)−Un+1

m )
∣∣∣≤ ε

∣∣∣∣( h2

ψ2
m
−1)D+D−Un+1(xm)

∣∣∣∣+ ε

∣∣∣∣(D+D−− d2

dx2 )U
n+1(xm)

∣∣∣∣
+

∣∣∣∣a( j)(xm)(
d
dx
−D−)Un+1(xm)

∣∣∣∣ . (17)

We use the Taylor series expansion for some terms of the above equation to simplify as,

h2

ψ2
m
−1 =− a( j)(η1)h

2ε +ha j(η1)
, (18)

D+D−Un+1(xm) =
d2Un+1

dx2 (η2), (19)

(D+D−− d2

dx2 )U
n+1(xm) =

h2

16
d4Un+1

dx4 (η3), (20)

(
d
dx
−D−)Un+1(xm) =

h
2

d2Un+1

dx2 (η4), (21)

for some ηi, xm−1 ≤ ηi ≤ xm+1, i = 1,2,3,4.
Substituting Eqs. (18)-(21) in (17), it leads to

∣∣∣L M,N
ε (Un+1(xm)−Un+1

m )
∣∣∣≤ ε

a( j)(η1)h
2ε +ha j(η1)

∣∣d2Un+1

dx2 (η2)
∣∣+ ε

h2

16

∣∣d4Un+1

dx4 (η3)
∣∣

+a( j)(xm)
h
2

∣∣d2Un+1

dx2 (η4)
∣∣. (22)

Let η = max{η1,η2,η3}. Using the bounds of derivatives in (13) and the boundedness of a( j)(x), for
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m = 0,1, . . . ,M, we obtain∣∣L M,N(Un+1(xm)−Un+1
m )

∣∣≤Ch
(

1+ ε
−2 exp

(−p(1−η2)

ε

))
+Ch2

ε

(
1+ ε

−4 exp
(−p(1−η3)

ε

))
+Ch

(
1+ ε

−2 exp
(−p(1−η4)

ε

))
≤Ch

(
1+ ε

−3 exp
(−p(1−η)

ε

))
+Ch2

(
1+ ε

−3 exp
(−p(1−η)

ε

))
+Ch

(
1+ ε

−3 exp
(−p(1−η)

ε

))
≤Ch

(
1+ ε

−3 exp
(−p(1−η)

ε

))
.

Apply limit as ε approaches to zero and using [26, Lemma 7 ], we have

lim
ε→0
|L M,N

ε (Un+1(xm)−Un+1
m )| ≤Ch, m = 0,1, . . . ,M.

Lemma 8 leads to lim
ε→0
|Un+1(xm)−Un+1

m | ≤Ch.

The temporal and spatial error estimates in Theorems 1 and 2, respectively, give the the following
main result of this paper.

Theorem 3. Let u(x, t) be the exact solution of (1) and Un
m be the solution of the numerical scheme (14).

The error estimate for the totally discrete scheme is |u(xm, tn)−Un
m| ≤C(∆t2 +h), 0≤ m≤M.

Therefore, the proposed method is ε-uniform convergent of second order in time and first order in
space.

6 Numerical results and discussion

In this section, we present numerical results using the proposed FOM in (15) and compare them with
the numerical results of FMMs given in [17, 19]. Three test examples are considered to validate the
theoretical results.

Since the exact solution of (1) is not known, we compute the maximum absolute error EM,N
ε by using

the double mesh principle [11] given by

EM,N
ε = max

(xm,tn)∈DN
M

|un;N
m;M−un;2N

m;2M|,

where un;N
m;M and un;2N

m;2M are approximate solutions to problem (1) on DN
M and D2N

2M, respectively. The
ε-uniform maximum absolute error is given by EM,N = max

ε
EM,N

ε .

The corresponding rate of convergence RM,N
ε is defined by

RM,N
ε = log2

(
EM,N

ε

E2M,2N
ε

)
,
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and the ε-uniform rate of convergence is RM,N = max
ε

RM,N
ε . In addition, for the linearization, we used

un+1,(0)
m = f (xm) as the initial guess, and we iterated up to 10−6 tolerance for stopping criteria. We

consider the following three examples.

Example 1. Consider the following singularly perturbed Burgers-Huxley problem:
∂u
∂ t − ε

∂ 2u
∂x2 +u ∂u

∂x − (1−u)(u−0.5)u = 0, (x, t) ∈ (0,1)× (0,1],
u(x,0) = x(1− x2), 0 < x < 1,
u(0, t) = 0 = u(1, t), 0≤ t ≤ 1.

Example 2. Consider the following singularly perturbed Burgers problem:
∂u
∂ t − ε

∂ 2u
∂x2 +u ∂u

∂x = 0, (x, t) ∈ (0,1)× (0,1],
u(x,0) = x(1− x2), 0 < x < 1,
u(0, t) = 0 = u(1, t), 0≤ t ≤ 1.

Example 3. Consider the following Burgers-Huxley problem:
ut − εuxx +αuux−β (1−u)(u− γ)u = 0, (x, t) ∈ (0,1)× (0,1],

u(x,0) = γ

2 +
γ

2 tanh(A1x), 0 < x < 1,
u(0, t) = γ

2 +
γ

2 tanh(−A1A2t), u(1, t) = γ

2 +
γ

2 tanh(A1(1−A2t)), 0≤ t ≤ 1.

The numerical solution of Example 1 is plotted in Figure 1 for T = 1, M = 64, N = 40, and ε = 10−4.
Also, Figures 2 and 3 are the numerical solutions for different values of T and ε , respectively. From these
Figures 1-3, we observe that the numerical solution of Example 1 for small values of ε has boundary layer
on the right side of the spatial domain with the time t→ 1.

In Tables 1,5, and 9, we tabulate the maximum absolute errors and numerical rate of convergences for
different values of ε and the temporal mesh size N with fixed spatial mesh size M = 64. As we observe
from the results, the newly proposed method converges uniformly in time with respect to ε and the rate of
convergence shows second order in time. In Tables 2, 6, and 10, we also tabulate the maximum absolute
errors and numerical rate of convergences for different values of spatial mesh size M with fixed temporal
mesh size N. The first order ε-uniform convergence in space is observed.

For comparison purposes, the maximum absolute errors and CPU time using the new proposed
method and the fitted mesh methods in [17, 19], are given in Tables 3, 4, 7 and 8 for Examples 1 and 2.
As we observe from these tables our method gives more accurate results than the schemes in [17,19] and
the CPU time of our method is slightly smaller than the method in [17]. The proposed method can be
applied to other singularly perturbed quasilinear problems of type (1).

7 Concluding remarks

In this paper, we have constructed a parameter-uniform convergent numerical method for solving the
singularly perturbed Burgers-Huxley problem that has the right boundary layer in the spatial direction.
We have applied the Crank-Nicolson method to discretize the time derivative and a fitted operator upwind
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Figure 1: Behavior of the solution for Example 1 at M = 64, N = 40 and ε = 10−4.
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Figure 2: Numerical solutions of Example 1 for different values of t with M = 64, N = 40 and ε = 10−4.
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Figure 3: Numerical solutions of Example 1 for different values of ε with M = 64, N = 40.

Table 1: Maximum absolute errors and rate of convergence for Example 1 at the number of intervals N
with fixed spatial mesh size M = 64.

ε ↓ N = 20 N = 40 N = 80 N = 160 N = 320 N = 640
100 1.73e-02 8.83e-03 4.44e-03 2.23e-03 1.04e-03 5.29e-04

0.97 0.99 1.00 1.10 0.97
10−2 1.10e-04 3.44e-05 8.34e-06 1.78e-06 4.33e-07 1.08e-07

1.68 2.05 2.22 2.04 2.01
10−4 7.82e-04 1.96e-04 4.91e-05 1.23e-05 3.07e-06 7.68e-07

1.99 2.00 2.00 2.00 2.00
10−6 7.82e-04 1.96e-04 4.91e-05 1.23e-05 3.07e-06 7.68e-07

1.99 2.00 2.00 2.00 2.00
10−8 7.82e-04 1.96e-04 4.91e-05 1.23e-05 3.07e-06 7.68e-07

1.99 2.00 2.00 2.00 2.00
10−10 7.82e-04 1.96e-04 4.91e-05 1.23e-05 3.07e-06 7.68e-07

1.99 2.00 2.00 2.00 2.00
10−12 7.82e-04 1.96e-04 4.91e-05 1.23e-05 3.07e-06 7.68e-07

1.99 2.00 2.00 2.00 2.00
EN,M 7.82e-04 1.96e-04 4.91e-05 1.23e-05 3.07e-06 7.68e-07
RM,N 1.99 2.00 2.00 2.00 2.00
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Table 2: Maximum absolute errors and rate of convergence for Example 1 at the number of intervals M
with fixed temporal mesh size N = 10.

ε ↓ M = 128 M = 256 M = 512 M = 1024 M = 2048 M = 4096
100 9.098e-06 2.275e-06 5.687e-07 1.422e-07 3.554e-08 8.896e-09

2.000 2.000 2.000 2.000 1.998
10−2 1.345e-04 3.368e-05 8.425e-06 2.107e-06 5.266e-07 1.317e-07

1.997 1.999 2.000 2.000 2.000
10−4 1.979e-02 1.255e-02 4.861e-03 5.848e-03 1.203e-02 2.865e-03

0.657 1.369 -0.267 -1.041 2.071
10−6 1.975e-02 1.285e-02 7.340e-03 4.373e-03 2.469e-03 1.317e-03

0.620 0.808 0.747 0.825 0.907
10−8 1.975e-02 1.285e-02 7.340e-03 4.373e-03 2.471e-03 1.322e-03

0.620 0.808 0.747 0.824 0.902
10−10 1.975e-02 1.285e-02 7.340e-03 4.373e-03 2.471e-03 1.322e-03

0.620 0.808 0.747 0.824 0.902
10−12 1.975e-02 1.285e-02 7.340e-03 4.373e-03 2.471e-03 1.322e-03

0.620 0.808 0.747 0.824 0.902
EN,M 1.975e-02 1.285e-02 7.340e-03 4.373e-03 2.471e-03 1.322e-03
RM,N 0.620 0.808 0.747 0.824 0.902

Table 3: Maximum absolute errors for Example 1 at the number of intervals M,N and compare with
methods in [17, 19].

ε ↓ M = 32 M = 64 M = 128 M = 256 M = 512
N = 20 N = 40 N = 80 N = 160 N = 320

20 1.708e-02 8.840e-03 4.482e-03 2.270e-03 1.141e-03
2−4 8.197e-04 5.174e-04 2.603e-04 1.396e-04 7.045e-05
2−8 1.042e-02 3.198e-03 8.274e-04 2.087e-04 5.232e-05
2−12 3.387e-02 2.844e-02 2.130e-02 9.090e-03 8.110e-03
2−16 3.387e-02 2.848e-02 2.274e-02 1.752e-02 1.316e-02

In [17]

20 2.5632e-02 1.6476e-02 9.9288e-03 5.6712e-03 3.1149e-03
2−4 3.1540e-02 2.0968e-02 1.1706e-02 6.3027e-03 3.3320e-03
2−8 8.3069e-02 6.3873e-02 3.7579e-02 1.9554e-02 9.7037e-03
2−12 5.9149e-02 1.2245e-01 1.4419e-01 9.5806e-02 5.5767e-02
2−16 3.7835e-02 8.8086e-02 1.9473e-01 2.0775e-01 1.3885e-01

In [19]

20 2.4400e-02 1.4033e-02 7.5889e-03 3.9547e-03 2.0227e-03
2−4 2.0658e-02 1.2614e-02 7.0567e-03 3.7952e-03 1.9563e-03
2−8 3.8607e-02 1.9497e-02 1.1221e-02 6.2852e-03 3.3405e-03
2−12 1.7017e-01 1.0083e-01 6.2216e-02 3.9526e-02 2.0493e-02
2−16 2.0450e-01 1.5975e-01 1.2612e-01 6.9772e-02 3.8531e-02
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Table 4: Maximum absolute error and CPU time for Example 1 when ε = 2−8.

Our method FMM in [17]
Number of intervals M,N M = 32 M = 64 M = 32 M = 64

N = 20 N = 40 N = 20 N = 40
Maximum Absolute Error 1.042e-02 3.198e-03 3.8607e-02 1.9497e-02

CPU Time 0.00776 0.0118 0.00817 0.0148

Table 5: Maximum absolute errors and rate of convergence for Example 2 at the number of intervals N
with fixed spatial mesh size M = 64.

ε ↓ N = 20 N = 40 N = 80 N = 160 N = 320 N = 640
100 1.72e-02 8.78e-03 4.42e-03 2.22e-03 1.04e-03 5.29e-04

0.97 0.99 0.99 1.10 0.97
10−2 1.14e-04 3.29e-05 8.00e-06 1.80e-06 4.49e-07 1.12e-07

1.80 2.04 2.15 2.00 2.00
10−4 7.67e-04 2.00e-04 5.00e-05 1.25e-05 3.13e-06 7.82e-07

1.94 2.00 2.00 2.00 2.00
10−6 7.67e-04 2.00e-04 5.00e-05 1.25e-05 3.13e-06 7.82e-07

1.94 2.00 2.00 2.00 2.00
10−8 7.67e-04 2.00e-04 5.00e-05 1.25e-05 3.13e-06 7.82e-07

1.94 2.00 2.00 2.00 2.00
10−10 7.67e-04 2.00e-04 5.00e-05 1.25e-05 3.13e-06 7.82e-07

1.94 2.00 2.00 2.00 2.00
10−12 7.67e-04 2.00e-04 5.00e-05 1.25e-05 3.13e-06 7.82e-07

1.94 2.00 2.00 2.00 2.00
EN,M 7.67e-04 2.00e-04 5.00e-05 1.25e-05 3.13e-06 7.82e-07
RM,N 1.94 2.00 2.00 2.00 2.00
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Table 6: Maximum absolute errors and rate of convergence for Example 2 at the number of intervals M
with fixed temporal mesh size N = 10.

ε ↓ M = 128 M = 256 M = 512 M = 1024 M = 2048 M = 4096
100 9.211e-06 2.303e-06 5.758e-07 1.439e-07 3.599e-08 9.003e-09

2.000 2.000 2.000 2.000 1.999
10−2 1.218e-04 3.051e-05 7.632e-06 1.908e-06 4.770e-07 1.193e-07

1.998 1.999 2.000 2.000 2.000
10−4 1.710e-02 1.102e-02 4.109e-03 5.638e-03 1.456e-02 4.106e-03

0.635 1.423 -0.457 -1.369 1.826
10−6 1.712e-02 1.177e-02 7.118e-03 3.908e-03 2.034e-03 1.090e-03

0.541 0.726 0.865 0.942 0.900
10−8 1.712e-02 1.177e-02 7.118e-03 3.907e-03 2.030e-03 1.108e-03

0.541 0.726 0.865 0.945 0.874
10−10 1.712e-02 1.177e-02 7.118e-03 3.907e-03 2.030e-03 1.108e-03

0.541 0.726 0.865 0.945 0.874
10−12 1.712e-02 1.177e-02 7.118e-03 3.907e-03 2.030e-03 1.108e-03

0.541 0.726 0.865 0.945 0.874
EN,M 1.712e-02 1.177e-02 7.118e-03 3.907e-03 2.030e-03 1.108e-03
RM,N 0.541 0.726 0.865 0.945 0.874

Table 7: Maximum absolute errors for Example 2 at the number of intervals M,N and compare with
methods in [17, 19].

ε ↓ M = 32 M = 64 M = 128 M = 256 M = 512
N = 20 N = 40 N = 80 N = 160 N = 320

20 1.698e-02 8.788e-03 4.464e-03 2.264e-03 1.139e-03
2−4 7.821e-04 5.092e-04 2.586e-04 1.391e-04 7.030e-05
2−8 9.214e-03 4.877e-03 1.138e-03 2.969e-04 7.358e-05
2−12 2.946e-02 2.501e-02 1.884e-02 7.766e-03 7.939e-03
2−16 2.946e-02 2.505e-02 2.017e-02 1.567e-02 1.188e-02

In [17]

20 2.4502e-02 1.4057e-02 7.5969e-03 3.9589e-03 2.0249e-03
2−4 3.7645e-02 2.2072e-02 1.2090e-02 6.4115e-03 3.3584e-03
2−8 9.9532e-02 5.4894e-02 2.7274e-02 1.2963e-02 6.0337e-03
2−12 2.2602e-01 2.6665e-01 1.8203e-01 1.0258e-01 5.2694e-02
2−16 4.4024e-02 3.2475e-01 3.2607e-01 2.5174e-01 1.6644e-01

In [19]

20 2.4502e-02 1.4057e-02 7.5969e-03 3.9589e-03 2.0249e-03
2−4 2.2788e-02 1.3365e-02 7.2769e-03 3.8441e-03 1.9728e-03
2−8 4.4450e-02 2.0109e-02 1.0519e-02 5.9653e-02 3.1896e-03
2−12 1.8762e-01 8.4106e-02 5.7234e-02 3.8309e-02 1.9041e-02
2−16 2.1340e-01 1.5016e-01 1.1582e-01 6.1958e-02 3.3441e-02
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Table 8: Maximum absolute error and CPU time for Example 2 when ε = 2−8.

Our method FMM in [17]
Number of intervals M,N M = 32 M = 64 M = 32 M = 64

N = 20 N = 40 N = 20 N = 40
Maximum Absolute Error 9.214e-02 4.877e-03 4.4450e-02 2.0109e-02

CPU Time 0.00807 0.00814 0.00817 0.0133

Table 9: Maximum absolute errors and rate of convergence for Example 3 at the number of intervals N
with fixed spatial mesh size M = 64.

ε ↓ N = 20 N = 40 N = 80 N = 160 N = 320 N = 640
100 9.18e-05 4.61e-05 2.28e-05 1.13e-05 5.22e-06 2.65e-06

0.99 1.02 1.02 1.11 0.98
10−2 8.82e-05 2.79e-05 6.82e-06 1.45e-06 3.51e-07 8.76e-08

1.66 2.03 2.23 2.05 2.00
10−4 6.80e-05 1.49e-05 3.46e-06 8.67e-07 2.16e-07 5.39e-08

2.19 2.11 2.00 2.01 2.00
10−6 6.80e-05 1.49e-05 3.46e-06 8.67e-07 2.16e-07 5.39e-08

2.19 2.11 2.00 2.01 2.00
10−8 6.80e-05 1.49e-05 3.46e-06 8.67e-07 2.16e-07 5.39e-08

2.19 2.11 2.00 2.01 2.00
10−10 6.80e-05 1.49e-05 3.46e-06 8.67e-07 2.16e-07 5.39e-08

2.19 2.11 2.00 2.01 2.00
10−12 6.80e-05 1.49e-05 3.46e-06 8.67e-07 2.16e-07 5.39e-08

2.19 2.11 2.00 2.01 2.00
EN,M 6.80e-05 1.49e-05 3.46e-06 8.67e-07 2.16e-07 5.39e-08
RM,N 2.19 2.11 2.00 2.01 2.00
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Table 10: Maximum absolute errors and rate of convergence for Example 3 at the number of intervals
M with fixed temporal mesh size N = 10.

ε ↓ M = 128 M = 256 M = 512 M = 1024 M = 2048 M = 4096
100 5.753e-08 1.438e-08 3.596e-09 8.992e-10 2.230e-10 5.670e-11

2.000 2.000 2.000 2.011 1.976
10−2 1.637e-05 4.114e-06 1.030e-06 2.576e-07 6.440e-08 1.610e-08

1.992 1.998 1.999 2.000 2.000
10−4 3.630e-04 2.062e-04 1.087e-04 4.728e-05 5.536e-05 5.420e-05

0.816 0.923 1.201 -0.228 0.030
10−6 3.630e-04 2.062e-04 1.108e-04 5.759e-05 2.937e-05 1.483e-05

0.816 0.895 0.945 0.971 0.985
10−8 3.630e-04 2.062e-04 1.108e-04 5.759e-05 2.937e-05 1.483e-05

0.816 0.895 0.945 0.971 0.985
10−10 3.630e-04 2.062e-04 1.108e-04 5.759e-05 2.937e-05 1.483e-05

0.816 0.895 0.945 0.971 0.985
10−12 3.630e-04 2.062e-04 1.108e-04 5.759e-05 2.937e-05 1.483e-05

0.816 0.895 0.945 0.971 0.985
EN,M 3.630e-04 2.062e-04 1.108e-04 5.759e-05 2.937e-05 1.483e-05
RM,N 0.816 0.895 0.945 0.971 0.985

finite difference method to discretize the spatial derivatives. Newton-Kantorovich quasilinearization
technique was used for the linearization. Theoretically, we have shown that the proposed method is
ε-uniform convergent of order two in time and one in space.

Numerical results are performed in Figures 1-3 and in Tables 1-10 for some test examples to confirm
the theoretical results. We have observed from these figures and tables that the numerical results are in
agreement with the theoretical findings. We have also observed that the proposed method gives a better
numerical accuracy compared to the fitted mesh methods in [17, 19].
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