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Abstract. This paper is concerned with the stochastic linear quadratic regulator (LQR) optimal control
problem in which dynamical systems have control-dependent diffusion coefficients. In fact, providing
the solution to this problem leads to solving a matrix Riccati differential equation as well as a vector dif-
ferential equation with boundary conditions. The present work mainly proposes not only a novel method
but also an efficient fixed-point scheme based on the spline interpolation for the numerical solution to
the stochastic LQR problem. Via implementing the proposed method to the corresponding differential
equation of the stochastic LQR optimal control problem, not only is the numerical solution gained, but
also a suboptimal control law is obtained. Furthermore, the method application is illustrated by means
of an optimal control example with the financial market problems, including two investment options.
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1 Introduction

The stochastic linear quadratic regulator (LQR) problem is an optimal control of a linear stochastic dif-
ferential equation with a quadratic cost criterion. Generally, stochastic LQR control is one of the most
important classes of optimal control problems, which can be widely applied in various fields (e.g., mod-
ern engineering, economic problems, and mathematical finance), especially in the control of financial
markets. For instance, Merton initiated the study of financial markets using continuous-time stochastic
models [22]. Regarding the classical Merton portfolio optimization problem, there are two investment
options: a risk-less asset with a constant interest rate and a risky asset whose price regularly fluctuates.
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The LQR problem has been proposed by Wonham [24] and elaborated by many scholars, among whom
we can mention [4, 12, 16].

The optimal feedback control of the stochastic LQR problem will be obtained if the problem can be
reduced to solving a Riccati differential equation and a backward differential equation. Thus, regarding
stochastic LQR problems, it is evident to study the associated differential equations [1]. As a result,
the numerical solution to the stochastic LQR relies on solving these equations efficiently. The linear
version of backward differential equation was first introduced by Bismut [3], and the nonlinear version
was independently introduced by Pardoux and Peng [17] as well as Duffie and Epstein [6]. These equa-
tions present a proper structure and wide applicability in a number of different areas, specifically in
mathematical finance. Hence, they have received considerable research attention in recent years (see,
e.g., [5, 7, 13, 15, 23, 27]). For instance, the Black-Scholes formula for options pricing can be recovered
via a system of forward-backward stochastic differential equations.

In the scientific sources on the stochastic LQR problem, control weight is usually assumed as a
positive definite matrix in the cost functional. Indeed, this assumption is essential for the problem to
be well posed, since positive definiteness is required to prepare it as a convex optimization problem.
However, in the stochastic LQR problem, when the diffusion term depends on the control, it has recently
been proposed that the control weight may be negatively definite, yet the problem remains well-posed.

The stochastic maximum principle for the LQR problem has been investigated since the 1960s [2, 8,
9,14,26]. As all the results demonstrate, the diffusion term does not depend on the control variable. This
concept was introduced by Peng [18] and Zhou [27] with respect to the systems with control-dependent
diffusion coefficients. Furthermore, regarding the usual first-order adjoint equation, the second-order
adjoint equation needs to be introduced in order to represent the risk factor due to implying uncertainty.
The maximum principle applied to the problem is indeed an extension of the Hamiltonian principle for
a status in which a quadratic term exists in the diffusion coefficient. However, Zhou [28] revealed that
Peng’s maximum principle is sufficient under certain convex conditions leading to an optimal solution
for some stochastic LQR problems, though the control weight is a negative definite matrix.

The present study is mainly intended to propose a new numerical approach concerning a class of
stochastic LQR optimal control problems with systems that have control-dependent diffusion coeffi-
cients, specifically via using the technique for the numerical solution of nonlinear stochastic Ito-Volterra
integral equations [10, 11]. As a matter of fact, the method is based on a combination of the fixed-point
method and linear spline interpolation [20]. It is worth noting that, since we could not detect any solved
numerical example in the literature review of this kind of problem, we cannot compare this method with
other methods. Thus, in this study, relative error is used in order to investigate the convergence of the
method.

The study outline is as follows: In Section 2, the stochastic LQR optimal control problem with
indefinite control weight costs is reviewed. A successive approximation method (SAM) is introduced
in Section 3. In Section 4, we practically utilize our findings to obtain a suboptimal control law and
an efficient algorithm with low computational complexity. In Section 5, we solve a financial example.
Ultimately, this paper is ended with conclusions in Section 6.
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2 Solution to LQR Problem

Let
(
Ω,F,{Ft}t0≤t≤t f ,P

)
be given and fixed complete filtered probability space [8] and let C

(
[t0, t f ];S

)
be the Banach space of S-valued continuous functions on [t0, t f ] endowed with the maximum norm ‖ · ‖
for a given Hilbert space S. Consider the following linear stochastic differential equation:

dx(t) =
[
A(t)x(t)+B(t)u(t)+ f (t)

]
dt +

[
C(t)u(t)

]
dW (t), t0 ≤ t ≤ t f , (1)

with initial condition x(t0) = x0. Here W (·) is an n-dimensional standard Brownian motion on the interval
[t0, t f ] and x(·) ∈ Rn (n-dimensional euclidean space). Furthermore, the entries of n×n matrix A(t) and
n×m matrices C(t) and B(t) belong to C

(
[t0, t f ];R

)
.

The cost functional associated with system (1) is

J(t0,x0,u(·)) = E
{

1
2

∫ t f

t0

[
xT (t)M(t)x(t)+uT (t)N(t)u(t)

]
dt +

1
2

xT (t f )Dx(t f )

}
, (2)

where E indicates the mathematical expectation and the symbol T denotes the transpose operation. Let
the n×n matrices M(t) and D be symmetric positive semidefinite, the m×m matrix N(t) be symmetric,
and t f be an exit time or a terminal time. In addition, the matrices M(t) and N(t) have continuous entries.
Note that here we do not assume that N(t) is positive definite.

A feedback control law is a piecewise continuous function U(·, ·) from [t0, t f ]×Rn into U , where U
is a closed subset of Rm. Here, the class of admissible controls is denoted by U . The control applied at
time t by using the feedback control U is u(t) = U(t,x(t)). The minimization of stochastic LQR optimal
control problem is regarded as the task of finding an optimal control u∗(·) ∈ U on the interval [t0, t f ]
by minimizing J and the associated optimum performance index J∗ (t0,x0) is the value of J resulted by
using the optimal control [8].

Consider the matrix Riccati differential equation

K̇(t) = −KT (t)A(t)−AT (t)K(t)−M(t)

+KT (t)B(t)
(

N(t)+CT (t)K(t)C(t)
)−1

BT (t)K(t), t0 ≤ t ≤ t f , (3)

with boundary condition K(t f ) = D. Also, consider the vector differential equation

ġ(t) = −AT (t)g(t)−K(t) f (t)+KT (t)B(t)
(

N(t)+CT (t)K(t)C(t)
)−1

BT (t)g(t), t0 ≤ t ≤ t f ,(4)

with boundary condition g(t f ) = 0 [29]. Here N(t)+CT (t)K(t)C(t) is a positive definite matrix.
Assume that Eqs. (3) and (4) have unique solutions K(t) and g(t), respectively, such that the entries

of n×n matrix K(t) belong to C
(
[t0, t f ];R

)
and g(t) ∈ C

(
[t0, t f ];Rn

)
. Then the stochastic LQR problem

can be reduced to solving these differential boundary problems.

Theorem 1. Assume that Eqs. (3) and (4) have unique solutions. Then an optimal control for problem
(1)–(2) is

u∗(t) =−P(t)−1BT (t)
(
K(t)x(t)+g(t)

)
, t0 ≤ t ≤ t f , (5)
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where

P(t) = N(t)+CT (t)K(t)C(t), t0 ≤ t ≤ t f . (6)

Furthermore, the optimal cost value is

J∗(t0,x0) =
1
2

∫ t f

t0

[
2 f T (t)g(t)+gT (t)B(t)P−1(t)BT (t)g(t)dt

]
dt +

1
2

xT
0 K(t0)x0 + x0g(t0). (7)

Proof. Consider the stochastic linear differential Eq. (1). Using Ito’s formula, we have

d(xT (t)K(t)x(t)) = xT (t)K̇(t)x(t)dt +2xT (t)K(t)dx(t)+
(
uT (t)CT (t)K(t)CT (t)u(t)

)
=
{

xT (t)
(
−M(t)+KT (t)B(t)P−1(t)BT (t)K(t)

)
x(t)+2uT (t)BT (t)K(t)x(t)

+2xT (t)K(t) f (t)+
(
uT (t)CT (t)K(t)CT (t)u(t)

)}
dt

+{2xT (t)K(t)C(t)u(t)}dW (t) (8)

and

d(xT (t)g(t)) =
{

xT (t)KT (t)B(t)P−1(t)BT (t)g(t)− xT (t)K(t) f (t)+uT (t)BT (t)g(t)+ f T (t)g(t)
}

dt

+{uT (t)CT (t)g(t)}dW (t). (9)

The boundary conditions of (3) and (4) imply

xT (t f )Dx(t f ) =
∫ t f

t0
d
(
xT (t)K(t)x(t)

)
+ xT

0 K(t0)x0,

and ∫ t f

t0
d
(
xT (t)g(t)

)
+ x0g(t0) = 0.

Thus by integrating both (8) and (9) from t0 to t f , taking expectations, and adding them together, the cost
functional (2) gets

J(t0,x0,u(·)) =
1
2
E

{∫ t f

t0

[
xT (t)M(t)x(t)+uT (t)

(
P(t)−CT (t)K(t)C(t)

)
u(t)

]
dt

+
∫ t f

t0
d
(
xT (t)K(t)x(t)

)
+d
(
xT (t)g(t)

)}
+ xT

0 K(t0)x0 + x0g(t0)

=
1
2
E

{∫ t f

t0

[
uT (t)P(t)u(t)+2uT (t)BT (t)

(
K(t)x(t)+g(t)

)
+xT (t)K(t)B(t)P−1(t)BT (t)K(t)x(t)+2 f T (t)g(t)

+2xT (t)K(t)B(t)P−1(t)BT (t)g(t)
]
dt

}
+

1
2

xT
0 K(t0)x0 + x0g(t0)
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=
1
2
E

{∫ t f

t0

[(
u(t)+P−1(t)BT (t)

(
K(t)x(t)+g(t)

))T
P(t)(

u(t)+P−1(t)BT (t)
(
K(t)x(t)+g(t)

))
+2 f T (t)g(t)−g(t)B(t)P−1(t)BT (t)g(t)

]
dt

}
+

1
2

xT
0 K(t0)x0 + x0g(t0). (10)

Here P(t) is a positive definite matrix, and so(
u(t)+P−1(t)BT (t)

(
K(t)x(t)+g(t)

))T
P(t)

(
u(t)+P−1(t)BT (t)

(
K(t)x(t)+g(t)

))
≥ 0.

Thus, the minimum value of the cost functional occurs when

u(t)+P−1(t)BT (t)
(
K(t)x(t)+g(t)

)
= 0.

It follows immediately that the optimal feedback control is resulted using (5) and the optimal cost value
is resulted using (7). The optimal control is given by (2) provided that the corresponding Eq. (1) under
(5) has a solution. However, under (5), Eq. (1) is reduced to

dx(t) =
[
A(t)x(t)−B(t)P−1(t)BT (t)

(
K(t)x(t)+g(t)

)]
dt

−C(t)P−1(t)BT (t)
(
K(t)x(t)+g(t)

)
dW (t), t0 ≤ t ≤ t f ,

x(t0) = x0.

(11)

Note that K ∈ C
(
[t0, t f ];R

)
, g ∈ C

(
[t0, t f ];R

)
,P ∈ C

(
[t0, t f ];R

)
. Eq. (11) is a nonhomogeneous linear

stochastic differential equation, and consequently, it has one and only one solution. Thus, the proof is
completed (we refer the reader to [29, Theorem 4.1]).

3 Numerical solution

In the previous section, it was demonstrated that solving stochastic LQR optimal control problem (1)–
(2) is equivalent to solving two differential equations of (3) and (4). Furthermore, in order to provide
approximate solutions to (1), we need to solve these equations. We can write (1) with initial condition
x(t0) = x0 as a stochastic integral equation

x(t) = x0 +
∫ t

t0
[A(s)x(s)+B(s)u(s)+ f (s)]ds+

∫ t

t0
C(s)u(s)dW (s), t0 ≤ t ≤ t f , (12)

where u(s) = −
(
N(s)+CT (s)K(s)C(s)

)−1BT (s)
(
K(s)x(s)+ g(s)

)
. Here, two functions K(s) and g(s)

are the solutions to (3) and (4). The second part of (12) is a stochastic integral. For any t ≥ 0, the
Brownian motion is almost definitely continuous but not differentiable at t. Thus, in this section, a new
approximations method is presented, which is based on the linear spline interpolation.
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The SAM [25] is regarded as one of the well-known and applicable classical methods to solve the
initial value problems and integral equations. This method is often used to prove the existence and
uniqueness of the solutions to integral equations.

The following recurrence relation is introduced by the SAM:

xn(t) = x0 +
∫ t

t0
[A(s)xn−1(s)+B(s)un−1(s)+ f (s)]ds+

∫ t

t0
C(s)un−1(s)dW (s), t0 ≤ t ≤ t f , (13)

where un−1(s) =−
(
N(s)+CT (s)K(s)C(s)

)−1BT (s)
(
K(s)xn−1(s)+g(s)

)
.

Theorem 2. Let xn be the solutions sequence produced by the successive approximation (13). Then xn

converges to x as n→ ∞, and x is the unique solution to (12).

Proof. The entries of matrices A(t), B(t), and C(t) involve continuous functions, and thus the terms in
integrals satisfy Lipschitz and linear growth conditions:∥∥∥(A(s)x(s)+B(s)u

(
s,x(s)

))
−
(

A(s)y(s)B(s)u
(
s,y(s)

))∥∥∥2
≤ L‖x(s)− y(s)‖2,∥∥∥C(s)u

(
s,x(s)

)
−C(s)u

(
s,y(s)

))∥∥∥2
≤ L‖x(s)− y(s)‖2,

and ∥∥∥A(s)x(s)+B(s)u
(
s,x(s)

)∥∥∥2
≤ L1

(
1+‖x(s)‖2),∥∥∥C(s)u

(
s,x(s)

)∥∥∥2
≤ L1

(
1+‖x(s)‖2),

for all t0 ≤ s≤ t f . Here u(s,x(s)) = P−1(s)BT (s)
(
K(s)x(s)(s)+g(s)

)
and L and L1 are constants.

Regarding linear spline interpolation, a new modification of the SAM is presented. First, we take
a partition ∆ with nodal points on [t0, t f ] as ∆ : t0 < t1 < · · · < tm−1 < tm = t f , where hi = ti− ti−1, i =
1,2, . . . ,m. Then the zeroth approximation x0(t) = x0 is considered. Using the recurrence relation (13),
we have

x1(t) = x0 +
∫ t

t0
[A(s)x0 +B(s)u0(s)+ f (s)]ds+

∫ t

t0
C(s)u0(s)dW (s), t0 ≤ t ≤ t f , (14)

where u0(s) = −
(
N(s)+CT (s)K(s)C(s)

)−1BT (s)
(
K(s)x0 + g(s)

)
. The function x1(t) on [t0, t f ] can be

approximated by a linear spline interpolation as

x1(t)≈ S1
∆(t) =

m−1

∑
i=1

ψ
1
i (t)χ[ti,ti+1](t), (15)

where

ψ
1
i (t) =

1
hi+1

[
x1(ti)(ti+1− t)+ x1(ti+1)(t− ti)

]
, i = 0,1,2, . . . ,m−1. (16)
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By substituting the grid points ti, i = 0,1, . . . ,m, in (14), we can find the unknown coefficients x1(ti), i =
0,1, . . . ,m, as below:

x1(ti) = x0 +
∫ ti

t0
[A(s)x0 +B(s)u0(s)+ f (s)]ds+

∫ ti

t0
C(s)u0(s)dW (s), t0 ≤ t ≤ t f . (17)

By substituting (15) in (13) for n = 2, we can obtain

x2(t) = x0 +
∫ t

t0
[A(s)x1(s)+B(s)u1(s)+ f (s)]ds+

∫ t

t0
C(s)u1(s)dW (s)

≈ x0 +
∫ t

t0

[
A(s)S1

∆(s)+B(s)u1
∆(s)+ f (s)

]
ds+

∫ t

t0
C(s)u1

∆(s)dW (s), t0 ≤ t ≤ t f ,

(18)

where u1
∆
(s) = −

(
N(s)+CT (s)K(s)C(s)

)−1BT (s)
(
K(s)S1

∆
(s)+ g(s)

)
. The function x2(t) on [t0, t f ] can

be approximated by a similar way:

x2(t)≈ S2
∆(t) =

m−1

∑
i=1

ψ
2
i (t)χ[ti,ti+1](t), (19)

where ψ2
i (t) =

[
x2(ti)(ti+1− t)+x2(ti+1)(t− ti)

]
/hi+1, i = 0,1,2, . . . ,m−1. Similarly, we can obtain the

unknown coefficients x2(ti),k = 0,1, . . . ,m, by substituting the grid points ti, i = 0,1, . . . ,m, in (18), as
follows:

x2(ti) ≈ x0 +
∫ ti

t0

[
A(s)S1

∆(s)+B(s)u1
∆(s)+ f (s)

]
ds+

∫ ti

t0
C(s)u1

∆(s)dW (s), t0 ≤ t ≤ t f . (20)

Generally, based on the aforementioned structure, we can approximate the function xn(t) on [t0, t f ], for
n≥ 2, as

xn(t)≈ Sn
∆(t) =

m−1

∑
i=1

ψ
n
i (t)χ[ti,ti+1](t), (21)

where

ψ
n
i (t) =

1
hi+1

[
xn(ti)(ti+1− t)+ xn(ti+1)(t− ti)

]
, i = 0,1,2, . . . ,m−1. (22)

In addition,

xn(ti) ≈ x0 +
∫ ti

t0

[
A(s)Sn−1

∆
(s)+B(s)un−1

∆
(s)+ f (s)

]
ds+

∫ ti

t0
C(s)un−1

∆
(s)dW (s), t0 ≤ t ≤ t f , (23)

where un−1
∆

(s) =
(
N(s)+CT (s)K(s)C(s)

)−1BT (s)
(
K(s)Sn−1

∆
(s)+g(s)

)
.

Definition 1. Let f be a function on [a,b]. The modulus of continuity of f is defined by

ω( f ,δ ) = sup
x,y∈[a,b],|x−y|<δ

| f (x)− f (y)|.
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Lemma 1. ( [19]) The function f (t) is uniformly continuous on [a,b] if and only if limδ→0 ω( f ,δ ) = 0.

Theorem 3. ( [21]) Let f (t) ∈C1[a,b] and Sn
∆
(t) be approximations of f (t) by a linear spline interpola-

tion. Then, ‖ f (t)−Sn
∆
(t)‖∞ ≤ ω( f ,δ ).

Proposition 1. Let {Sn
∆
(t)}∞

n=1 be the solution sequence produced by the numerical successive approxi-
mations (21). Then this sequence converges to the solution x(t) to (12).

Proof. The entries of matrices A(t), B(t), and C(t) involve continuous functions. Therefore, the terms
in integrals satisfy Lipschitz and linear growth conditions. Thus the error function En

∆
(t) and residual

function Rn
∆
(t) are defined as

En
∆(t) = xn(t)−Sn

∆(t), n≥ 1,

Rn
∆(t) = xn(t)−Zn

∆(t), n≥ 2,

where

Zn(t) = x0 +
∫ t

t0

[
A(s)Sn−1

∆
(s)+B(s)un−1

∆
(s)+ f (s)

]
ds+

∫ t

t0
C(s)un−1

∆
(s)dW (s), t0 ≤ t ≤ t f .

First, we show that

lim
|∆|→0,n→∞

‖Rn
∆(t)‖= 0, n≥ 2.

Thus, for n≥ 2, by applying the Cauchy-Schwarz inequality and Doob’s inequality, we have

‖Rn
∆(t)‖2 = ‖xn(t)−Zn

∆(t)‖2

≤ 2
∥∥∥∫ t

t0

[(
A(s)xn−1(s)+B(s)un−1(s)

)
−
(

A(s)Sn−1
∆

(s)+B(s)un−1
∆

(s)
)]

ds
∥∥∥2

+2
∥∥∥∫ t

t0
C(s)

(
un−1(s)−un−1

∆
(s)
)
dW (s)

∥∥∥2

≤ 2
∫ t

t0

∥∥∥[(A(s)xn−1(s)+B(s)un−1(s)
)
−
(

A(s)Sn−1
∆

(s)+B(s)un−1
∆

(s)
)]∥∥∥2

ds

+2
∫ t

t0

∥∥∥C(s)
(
un−1(s)−un−1

∆
(s)
)∥∥∥2

ds

≤ L3

∫ t

t0

∥∥∥xn−1(s)−Sn−1
∆

∥∥∥2
ds = L3

∫ t

t0

∥∥∥En−1
∆

∥∥∥2
ds≤ L3ω

2(xn−1(s), |∆|).

Furthermore, ‖En
∆
(t)‖2 = ‖xn(t)−Zn

∆
(t)+Zn

∆
(t)−Sn

∆
(t)‖2. Hence,

‖En
∆(t)‖2 ≤ 2‖Zn

∆(t)−Sn
∆(t)‖2 +2‖Rn

∆(t)‖2 ≤ 2ω
2(Zn

∆(t), |∆|)+2L3ω
2(xn−1(s), |∆|).

Moreover, Zn
∆

is uniformly continuous on [t0, t f ], and from Lemma 1, we obtain

lim
|∆|→0,n→∞

‖Rn
∆(t)‖= 0, n≥ 2.

Thus, by Theorem 1, we have lim
|∆|→0,n→∞

‖xn(t)−Sn
∆(t)‖= 0, for n≥ 2.
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Via applying a numerical integration method (e.g., Legendre Gauss method), we can approximate
the first integral part of (23). Regarding the stochastic integral part, we can apply the Ito approximation
as follows: ∫ ti

t0
C(t)u1

∆(t)dW (t) =
j=i−1

∑
j=0

C(t j)u1
∆(t j)

(
W (t j+1)−W (t j)

)
.

Therefore, we obtain the ith optimal control law as follows:

ui(t) =−
(
N(t)+CT (t)K(t)C(t)

)−1BT (t)
(

K(t)xi(t)+g(t)
)
.

According to Theorem 1, the solution sequence xi(t) is almost surely uniform convergence. We define
x̂(t) as the limits of sequence xi(t). The control sequence ui(t) is only related to xi(t); so it is also
uniformly convergent. Assume u∗(t) as the limit of sequence ui(t). Summarizing the above, we obtain
the following theorem.

Theorem 4. Consider the problem of minimizing the cost functional (2) subject to system (1). Then the
optimal control law is obtained as follows:

u∗(t) =−
(
N(t)+CT (t)K(t)C(t)

)−1BT (t)
(

K(t)x̂(t)+g(t)
)
. (24)

4 Suboptimal control design strategy

In this section, we intend to elaborate practically on the results presented in the previous section. Since
we cannot calculate the optimal control law in (24), via substituting a finite positive integer l in (24) for
n→ ∞, we can explore a suboptimal control law with respect to its practical applications. Thus, the lth
order suboptimal control law is obtained as follows:

ul(t) =−
(
N(t)+CT (t)K(t)C(t)

)−1
(t)BT (t)

(
K(t)xl(t)+g(t)

)
. (25)

Generally, the lth integer in (25) is specified generally on the basis of a concrete control precision. Let
l = i, and consider the lth order suboptimal control law from (25). Then, the following optimal value of
quadratic performance index can be calculated:

Jl = E
{

1
2

∫ t f

t0

[
xT

l (t)M(t)xl(t)+uT
l (t)N(t)ul(t)

]
dt +

1
2

xT
l (t f )Dxl(t f )

}
, (26)

where ul(t) is obtained from (25) and xl(t) is the corresponding state trajectory.
Regarding the accuracy analysis, the following criterion is taken into consideration. The suboptimal

control (25) has the desirable accuracy, if, for given positive constants ε > 0, the following condition
holds jointly:

Erl =
‖xl− xl−1‖
‖xl‖

< ε,

where ‖ · ‖ serves as the Euclidean norm. If the tolerance error bound ε > 0 is appropriately selected on
small amounts, the lth order suboptimal control law reaches very close to the optimal control law u∗(t)
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and the value of quadratic performance index in (26) will be very near to its optimal value J∗. According
to Theorems 1 and 4, the boundary state conditions will be tightly satisfied.

Now, in order to confirm the accuracy of solutions, the following algorithm of the proposed method
is presented having the low computational complexity:

Algorithm 1:

Input: t0, t f ∈ R,m,N ∈ N.

Step 1: Solve the matrix K(t) and vector g(t) from the differential equations (3) and (4).

Step 2: Put x0(t) = x0 and u0(t) =−
(
N(t)+CT (t)K(t)C(t)

)−1BT (t)
(

K(t)x0 +g(t)
)

.

Step 3: Compute x1(ti), i = 0,1, . . . ,m from (17).

Step 4: Define the functions ψ1
i (t), i = 0,1, . . . ,m−1 from (16).

Step 5: Put x1(t)≈ S1
∆
(t) from (15).

Step 6: Put u1(t) = u1
∆
(t).

Step 7: For n = 2,3, . . . ,N
Compute xn(ti), i = 0,1, . . . ,m from (23).
Define the functions ψn

i (t), i = 0,1, . . . ,m−1 from (22).
Compute xn(t)≈ Sn

∆
(t) from (21).

Put un(t) = un
∆
(t).

If Ern =
‖xn− xn−1‖
‖xn‖

< ε , then stop and go to step 8;

Step 8: Stop the algorithm; set un(t) as the desirable close-loop suboptimal control law.

The following examples illuminate how we can find the optimal solution via applying the proposed
method. Symbolic computation software MATLAB was utilized in order to perform the codes.

Example 1. Consider the problem of minimizing cost functional

J = E
{

1
2

∫ 1

0
x2(t)dt +

1
2

x2(1)
}
,

subject to the system of differential equation

dx =
(
x(t)+2u(t)+ e(t−1))dt +2u(t)dW (t), 0≤ t ≤ 1,

with initial condition x(0) = 5. We have A(t) = M(t) = D = 1, B(t) = C(t) = 2, N(t) = 0, and f (t) =
e(t−1). Therefore, the Riccati differential equation becomes

K̇(t) =−K(t)−1, 0≤ t ≤ 1,

with boundary condition K(1) = 1, whose unique solution is K(t) =−1+2e1−t . Also we have

ġ(t) = e(t−1)−2, 0≤ t ≤ 1,
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with boundary condition g(1) = 0, whose unique solution is g(t) = e(t−1)−2t +1.
First, we take a partition ∆ with nodal points on [t0, t f ] as ∆ : t0 < t1 < · · · < tm−1 < tm = t f , Using

relation (17) for i = 1,2, . . . ,m, we have

x1(ti) = 5+
∫ ti

0
[5+u0(s)+ f (s)]ds+

∫ ti

t0
u0(s)dW (s), t0 ≤ t ≤ t f ,

where u0(t) =−(−2+4e1−t)−1
(
5(−1+2e1−t)+e(t−1)−2t+1

)
. Then we compute the functions ψ1

i (t)
from (16), and using (15), we obtain

x1(t)≈ S1
∆(t) =

m−1

∑
i=1

ψ
1
i (t)χ[ti,ti+1](t).

In the following, via applying (21) and (22), we obtain

xn(t)≈ Sn
∆(t) =

m−1

∑
i=1

ψ
n
i (t)χ[ti,ti+1](t),

where ψn
i (t) =

[
xn(ti)(ti+1− t)+ xn(ti+1)(t− ti)

]
/hi+1, i = 0,1,2, . . . ,m−1. In addition,

xn(ti)≈ 5+
∫ ti

0

[
Sn−1

∆
(s)+un−1

∆
(s)+ e(t−1)

]
ds+

∫ ti

t0
un−1

∆
(s)dW (s), 0≤ t ≤ 0.

Initial approximation x0(t) = x0 can be taken into account. Through persistent use of this process, each
iteration can result in x(t) and u(t). As a result, a suboptimal cost functional can be obtained. It should
be noted that x(t) and u(t) are considered as random variables and that the results are achieved with
probability one. Thus, optimal value and suboptimal cost functionals are considered random, as well.
Therefore, the simulation 100 times, optimal value, and suboptimal cost functionals are run, and the
errors averages are estimated.

As (26) demonstrates, suboptimal cost functionals are acquired. In order to obtain an accurate enough
suboptimal control law, the proposed algorithm was applied with the tolerance error bound ε = 10−4.
Table 1 illustrates the errors at the different iteration times. As observed in Table 1, after four iterations,
the convergence is achieved only; that is, Er4 = 7×10−6 < 10−4.

The results demonstrate that in l = 4, this method converges to solution x∗(t)∼= x4(t) in probability.
Thus, the optimal control is u∗(t)∼= u4(t). Moreover, Figures 1 and 2 show plots of x4(t) and u4(t).

Table 1: Errors at the different iterations for Example 1.

iteration time l Erl

1 -
2 0.8707
3 0.4668
4 7×10−6

...
...
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(a) The optimal path for m = 30 with 10 runs. (b) The optimal path for m = 50 with 30 runs.

(c) The optimal path for m = 200 with 100 runs. (d) The optimal path for m = 300 with 200 runs.

Figure 1: Comparing the optimal path in Example 1.

(a) The optimal control for m = 30 with 10 runs. (b) The optimal control for m = 200 with 100 runs.

Figure 2: Comparing the optimal control in Example 1.
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5 Application in finance

In this section, we consider a financial market consisting of two investment options. We can either invest
money in a bond (a risk-less bank account) with a fixed interest rate r, with prices

db(t) = b(t)rdt, b0 = 1,

or we can invest money in a risky asset with an expected rate of return µ > r and volatility σ(t)> 0. Let
π(t) be the proportion of our money invested in the stock at the time t. Assume that x(t) is our money at
the time t, which satisfies the following stochastic differential equation:

dx(t) = x(t)
[
r+(µ− r)π(t)

]
dt +σ(t)π(t)x(t)dW (t), t0 ≤ t ≤ t f , (27)

with initial condition x(t0) = x0, where x0 > 0 is the initial wealth and our control is π(t). In this market,
the cost function can be the final cost or total cost (holding cost and final cost). The goal is to minimize
cost function by changing π(t) in during [t0, t f ].

First, we let final cost for this market be 1
2 x2(t f )Q. Thus, the objective function is

min
π(t)

E
{

1
2

x2(t f )Q
}
. (28)

It is evident that the presented model has a continuous optimal control. Here, we explain how the results
of previous sections were applied in order to solve this problem using the stochastic LQR problem.
Normally, we should turn this problem formula into the stochastic LQR problem (1)–(2). We can rewrite
(27) as the following equation

dx(t) =
[
rx(t)+(µ− r)π(t)x(t)

]
dt +σ(t)π(t)x(t)dW (t), t0 ≤ t ≤ t f .

If we get u(t) = u(t,x(t)) = π(t)x(t), then this problem is converted to a stochastic LQR problem, and
using the obtained results, the problem can be solved. Therefore, (27) is rewritten as

dx(t) =
[
rx(t)+(µ− r)u(t)

]
dt +σ(t)u(t)dW (t), t0 ≤ t ≤ t f , (29)

with initial condition x(t0) = x0. Note that here we have

A(t) = r, B(t) = (µ− r), C(t) = σ(t), f (t) = 0, M(t) = N(t) = 0, and D = Q.

As a result, the optimal control problem (1)–(2) is converted to equivalent stochastic LQR problem (28)–
(29). Thus two differential equations (2) and (3) are obtained as below:

K̇(t) =−2rK(t)+(µ− r)2(
σ

2(t)
)−1K(t), t0 ≤ t ≤ t f ,

with boundary condition K(t f ) = Q, and

ġ(t) =−rg(t)+(µ− r)2
(

σ
2(t)
)−1

g(t), t0 ≤ t ≤ t f ,
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with boundary condition g(t f ) = 0. It is evident that g(t) = 0 for all [t0, t f ]. Thus, using the LQR
problem, we have u∗(t) =−

(
σ2(t)

)−1
(µ− r)x(t), where u∗(t) = π∗(t)x(t). It can be concluded π∗(t) =

−(µ− r)/σ2(t), and so the problem is solved.
Now let the cost function be total cost. Consequently, the objective function is as follows:

min
π(t)

E
{

1
2

∫ t f

t0

(
(π(t)x(t))2N(t)

)
dt +

1
2

x2(t f )Q
}
.

As in the previous example, we convert the problem to the stochastic LQR problem (29) with the cost
function

min
u

E
{

1
2

∫ t f

t0

(
(u(t))2N(t)

)
dt +

1
2

x2(t f )Q
}
,

where u(t) = π(t)x(t). Hence the differential equation (2) is obtained as below:

K̇(t) =−2rK(t)+(µ− r)2K2(t)
(
N(t)+σ

2(t)K(t)
)−1

, t0 ≤ t ≤ t f ,

with boundary condition K(t f ) = Q. In this example, g(t) = 0 for all [t0, t f ]. Thus, using the LQR prob-
lem, we have u∗(t) = −

(
N(t)+σ2(t)K(t)

)−1
(µ − r)K(t)x(t), where u∗(t) = π∗(t)x(t). Consequently

π∗(t) =−
(
N(t)+σ2(t)K(t)

)−1
(µ− r)K(t).

Example 2. Consider a financial market with the following stochastic differential equation:

dx = x(t)
[
2+3π(t)

]
dt +2et

π(t)x(t)dW (t), 0≤ t ≤ 1,

with initial condition x(0) = 10. The objective function is considered as

min
π(t)

E
{

1
2

∫ 1

0

(
(π(t)x(t))2e2t

)
dt +

1
4

x2(1)
}
.

Here, we have r = 2, µ = 5, σ(t) = 2et , N(t) = e2t , and Q =
1
2

. Therefore, the Riccati differential

equation is K̇(t) =−4K(t)+9K2(t)
(
e2t +4e2t

)−1
, 0≤ t ≤ 1, with boundary condition K(1) =

1
2
, whose

unique solution is

K(t) =
10e4

3e(4−2t)−3e(4t−2)+20e4t
,

As a result,

π
∗(t) =−3

( 10e(2t+4)

3e(4−2t)−3e(4t−2)+20e4t
+4e−2t

)
.

6 Conclusion

In this paper, we have studied a general class of stochastic LQR, in which the state equation has been
formulated in terms of control-dependent diffusion coefficients. It was observed that the optimal control
problem might be well-posed even when the control weight costs are indefinite and that the diffusion
term in the state equation depends on the control term. The stochastic LQR problem will be solvable if
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there are solutions to two differential equations. Indeed, using these two differential equations, a new
numerical approach has been presented to solve this problem on the basis of linear spline interpolation,
which eliminates the calculation (computational) complexities. Ultimately, we have demonstrated the
performance of this algorithm in a financial market in order to minimize the final cost. It is worth noting
that the underlying purpose of this study is to embed the original problems into the stochastic LQR
optimal control problem.
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