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Abstract. In this paper, a wavelet-based numerical algorithm is described to obtain approximate numer-
ical solution of a class of nonlinear Fredholm integral equations of second kind having smooth kernels.
The algorithm involves approximation of the unknown function in terms of Daubechies scale functions.
The properties of Daubechies scale and wavelet functions together with one-point quadrature rule for the
product of a smooth function and Daubechies scale functions are utilized to transform the integral equa-
tion to a system of nonlinear equations. The efficiency of the proposed method is demonstrated through
three illustrative examples.
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1 Introduction

Most of the natural phenomena are described by some nonlinear equations as they are intrinsically non-
linear in nature. In many cases, the nonlinear equations are approximated by some linear equations
which are then solved either exactly or approximately. This linearization procedure works nicely upto
certain extent. However, the presence of a small error in the input value may sometimes provides a large
error in the output value so as to vitiate the process. Thus it is better to study the nonlinear system as
such without making any linearization. Nonlinear integral equations arise in many areas of mathematical
physics such as in scattering theory, stationary shapes of needle, emerging broken symmetry in space
and time, neutron transport, traffic model and many more (see [3, 5, 20]), etc.
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In this paper, an efficient numerical method has been established to obtain approximate numerical
solution of a nonlinear Fredholm integral equation of second kind of the form

f (x)+λ

∫ b

a
L (x,y, f (y))dy = q(x), a≤ x≤ b. (1)

The main difficulty to solve this type equation is the presence of the unknown function f (x) in the kernel
of the integral equation. The above form of nonlinear integral equation is known as Urysohn integral
equation. If the kernel function L (x,y, f (y)) can be separated as T (x,y)g(y, f (y)) (g(., .) is a different
function of two aurguments) then the integral equation is known as Hammerstein integral equation. The
forcing term q(x) and the unknown function f (x) both are assumed to be continuous on [a,b]. Also the
function L (x,y, f (y)) is continuous on [a,b]× [a,b]×R. We also assume that the kernel L (x,y, f (y))
satisfies the Lipschitz condition with respect to the third argument and Lipschitz constant γ satisfies the
inequality |λ |γ < 1 to ascertain the unique solution of the nonlinear integral equation [19].

It is well known that various numerical schemes have been proposed to solve a nonlinear integral
equation in the literature from time to time. As our concern here is to employ wavelet method to solve
an integral equation, some works in which mostly wavelets have been used are cited here. For example,
both nonlinear Volterra and Fredholmn integral equations are solved numerically by employing Legendre
wavelets by Mahamoudi [11]. Maleknejad et al. [12] constructed Petrov-Galerkin elements from piece-
wise polynomials to solve a class of nonlinear Hammerstein equations. Ordokhani and Razzaghi [15]
have used collocation method to solve nonlinear Fredholm Hammarstein integral equations using ra-
tionlized Haar functions. The Toeplitz matrix method was used by Abdou et al. [2] for Hammerstein
integral equation. Discrete Legendre spectral projection method was used for Fredholm-Hammerstein
equation by Das et al [6]. Sinc-collocation method was used to find approximate numerical solution of
Hammerstein integral equation of mixed type by Hashemizadeh et al. [8]. An efficient algorithmic was
employed by Abdolmaleki and Najafi [1] to solve Hammerstein integral equation in which use of the
Taylor series expansion plays an important role. Very recently Chandrashekhar integral equation was
solved by iterative method after transforming it to Hammerstein integral equation by Hermandez-veron
et al [9].

In this paper, we use Daubechies wavelets to solve a class of nonlinear Fredholm integral equations.
The raw images (the unknown coefficients used in the expansions of fnctions) are expressed in terms of
products of weights and functional values at nodes of one-point quadrature rule. Using the properties
of Daubechies scale and wavelet functions, the integral equation is transformed to a system of nonlinear
equations. Though the expansion of raw images is possible using weights and nodes of M-(> 1) point
Gauss-Daubechies quadrature rule [18] for the product of smooth function and Daubechies scale function
but it will be more strenuous in dealing with nonlinear terms in the integral equation as the corresponding
system of nonlinear equations contain greater number of variables than the number of equations. As
one-point quadrature formula has adequete precision, it plays an important role in dealing with nonlinear
terms. The raw images which are involved in the expansion of the unknown function can be obtained
solving the system of equations by any standard numerical methods such as Newton’s method, Seidal
iteration method, iteration method or by using softwere such as MATLAB, MATHEMATICA, Python etc.

The paper is organized as follows: Section 2 is devoted to a short survey on Daubechies scale and
wavelet functions. The subsequent section deals with approximation of unknown function, forcing term
and kernel function. The numerical method is described in Section 4 and error has been estimated in
Section 5. Numerical illustration is given in Section 6 and a conclusion in Section 7.
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2 A short survey on Daubechies scale and wavelet functions

Wavelets have diverse applications in different diciplines such as approximation theory, differential equa-
tion, integral equation, numerical analysis in mathematics, image compression in computer science, sig-
nal processing in electrical engineering and data analysis in statistics. Haar wavelet method has been
applied by Beylkin et al. [4] for the first time to solve integral equations. In fact this provides a new
direction of research dealing with integral and differential equations using wavelets. Here Daubechies
wavelet basis is used in approximation of functions. Though the detail description of Daubechies scale
and wavelet functions is available (cf. [7,13,14]), a short review is given below for the sake of complete-
ness.

2.1 Two-scale relation

The set of functions
{

φ jk(x) = 2
j
2 φ(2 jx− k) : k ∈ Z

}
which is used in approximation of functions can be

generated by repeated application of translation and transformation from a single function φ(x), known
as scale function. The scale function with compact support [0,2K−1] satisfies the following relation
known as two-scale relation

φ(x) =
√

2
2K−1

∑
l=0

hlφ(2x− l). (2)

This two-scale relation plays a key role in developing numerical algorithms as the explicit forms of
Daubechies scale functions are not known. The wavelet function ψ(x) satisfies the relation

ψ(x) =
√

2
2K−1

∑
l=0

glφ(2x− l). (3)

This relation provides as a connector between the scale function φ(x) and wavelet function ψ(x). Here
hl and gl (l = 0,1, . . . ,2K−1) are called low pass and high pass filter coefficients and they are linked by
the relation gl = (−1)lh2K−1−l .

Though the translation parameter k in the basis set
{

φ jk(x)
}

belongs to Z but when one deals with
finite interval [a,b], a restriction on the selection of the values of k has to be imposed. In this case, three
collections of k are considered namely ΛL

j ,Λ
I
j and ΛR

j . The notation Λ j is used as index set to mean
Λ j = ΛL

j ∪ΛI
j ∪ΛR

j [14].

2.2 One-point quadrature rule

The one-point quadrature rule in the interval [a,b] for the interior scale function φ I
jk(x) was carried out

by Sweldens and Piessen (c.f. [16]) whereas for truncated scale function φ L or R
jk (x) was carried out by

Panja and Mandal [16]. The one-point quadrature rule for integrals involving the product of a smooth
function f (x) and Daubechies scale function is given by

∫ b

a
f (x)φ s

jk(x)dx = ws
jk f
(
x̄s

jk
)
, s = L, I,R, (4)
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where

ws
jk =


wL

jk =
1

2
j
2
< x0 >[a2 j−k,2K−1], if k ∈ ΛL

j ,

wI
jk =

1

2
j
2
, if k ∈ ΛI

j,

wR
jk =

1

2
j
2
< x0 >[0,b2 j−k], if k ∈ ΛR

j ,

(5)

and

x̄s
jk =



x̄L
jk =

k+
<x>

[a2 j−k,2K−1]

<x0>
[a2 j−k,2K−1]

2 j , if k ∈ ΛL
j ,

x̄I
jk =

k+< x >
2 j , if k ∈ ΛI

j,

x̄R
jk =

k+
<x>

[0,b2 j−k]

<x0>
[0,b2 j−k]

2 j , if k ∈ ΛR
j .

(6)

Here ΛI
j and ΛL or R

j (see [14]) are the collection of translation parameter k for the interior scale function
φ I

jk(x) and truncated scale function φ L or R
jk (x). < xm >[a2 j−k,2K−1]=

∫ 2K−1
a2 j−k xmφ(x)dx and < xm >[0,b2 j−k]=∫ b2 j−k

0 xmφ(x)dx are the partial moments for truncated scale function. The valus of these partial moments
are tabulated in Table-3a and Table-3b for Dau-3 scale function in [17]. < xm >=

∫
R xmφ(x)dx is the full

moment for interior scale function which can be calculated by the formula (see [10])

< xm >=
1

2m−1
1√
2

m−1

∑
n=0

m!
n!(m−n)!

(
2K−1

∑
l=1

hllm−n

)
< xn > . (7)

Moreover, the partial and full moments satisfy the relation

< xm >[a2 j−k,2K−1] +< xm >[0,b2 j−k]=< xm > . (8)

3 Approximation of functions in Daubechis wavelet basis

The unknown function f (x) and the known forcing term q(x) of the integral equation are approximated
in terms of Daubechies scale functions as

f (x)≈ ∑
k∈Λ j

f s
jkφ

s
jk(x), (9)

and
q(x)≈ ∑

k∈Λ j

qs
jkφ

s
jk(x). (10)

The raw images f s
jk and qs

jk in the expansion of f (x) and q(x) are obtained after multiplying both sides
of (9) and (10) by φ s

jk(x) and then integrating over [a,b] as

f s
jk =


f L

jk = ∑
a2 j−1
l=a2 j−2K+2(N

L)−1
k−a2 j,l−a2 j wL

jl f (x̄L
jl), if k ∈ ΛL

j ,

f I
jk = wI

jk f (x̄I
jk), if k ∈ ΛI

j,

f R
jk = ∑

b2 j−1
l=b2 j−2K+2(N

L)−1
k−b2 j,l−b2 j wR

jl f (x̄R
jl) if k ∈ ΛR

j ;

(11)
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and

qs
jk =


qL

jk = ∑
a2 j−1
l=a2 j−2K+2(N

L)−1
k−a2 j,l−a2 j wL

jlq(x̄
L
jl), if k ∈ ΛL

j ,

qI
jk = wI

jkq(x̄I
jk), if k ∈ ΛI

j,

qR
jk = ∑

b2 j−1
l=b2 j−2K+2(N

L)−1
k−b2 j,l−b2 j wR

jlq(x̄
R
jl), if k ∈ ΛR

j .

(12)

The kernel L (x,y, f (y)) is a function of several variables in which the unknown function f (y) is present
in nonlinear form. The kernel function L (x,y, f (y)) is approximated in Daubechies scale functions basis
as

L (x,y, f (y))≈ ∑
k′∈Λ j

∑
k∈Λ j

L s′s
j:k′kφ

s′
jk′(x)φ

s
jk(y). (13)

The raw images L s′s
j:k′k are evaluated from the equation (13) by successively multiplying by φ s

jk(y), φ s′
jk′(x)

and integrating with respect to x and y over [a,b], and are given by

L s′s
j:k′k =



L LL
j:k′k = ∑

a2 j−1
l1=a2 j−2K+2 ∑

a2 j−1
l2=a2 j−2K+2(N

L)−1
k′−a2 j,l1−a2 j(NL)−1

k−a2 j,l2−a2 j

wL
jl1wL

jl2L (x̄L
jl1 , ȳ

L
jl2 , f (ȳL

jl2)), if k ∈ ΛL
j ,k
′ ∈ ΛL

j ,

L IL
j:k′k = ∑

a2 j−1
l=a2 j−2K+2(N

L)−1
k−a2 j,l−a2 j wL

jlw
I
jk′L (x̄I

jk′ , ȳ
L
jl, f (ȳL

jl)), if k ∈ ΛL
j ,k
′ ∈ ΛI

j,

L LL
j:k′k = ∑

b2 j−1
l1=b2 j−2K+2 ∑

a2 j−1
l2=a2 j−2K+2(N

R)−1
k′−b2 j,l1−b2 j(NL)−1

k−a2 j,l2−a2 j ,

wR
jl1wL

jl2L (x̄R
jl1 , ȳ

L
jl2 , f (ȳL

jl2)), if k ∈ ΛL
j ,k
′ ∈ ΛR

j ,

L LI
j:k′k = ∑

a2 j−1
l=a2 j−2K+2(N

L)−1
k′−a2 j,l−a2 j wL

jlw
I
jkL (x̄L

jl, ȳ
L
jk, f (ȳL

jk)), if k ∈ ΛI
j,k
′ ∈ ΛL

j ,

L II
j:k′k = wI

jk′w
I
jkL (x̄I

jk′ , ȳ
I
jk, f (ȳI

jk)), if k ∈ ΛI
j,k
′ ∈ ΛI

j,

L RI
j:k′k = ∑

b2 j−1
l=b2 j−2K+2(N

R)−1
k′−b2 j,l−b2 j wR

jlw
I
jkL (x̄R

jl, ȳ
I
jk, f (ȳI

jk)), if k ∈ ΛI
j,k
′ ∈ ΛR

j ,

L LR
j:k′k = ∑

a2 j−1
l1=a2 j−2K+2 ∑

b2 j−1
l2=b2 j−2K+2(N

L)−1
k′−a2 j,l1−a2 j(NR)−1

k−b2 j,l2−b2 j ,

wL
jl1wR

jl2L (x̄L
jl1 , ȳ

R
jl2 , f (ȳR

jl2)), if k ∈ ΛR
j ,k
′ ∈ ΛL

j ,

L IR
j:k′k = ∑

b2 j−1
l=b2 j−2K+2(N

R)−1
k−b2 j,l−b2 j wR

jlw
I
jk′L (x̄I

jk′ , ȳ
R
jl, f (ȳR

jl)), if k ∈ ΛR
j ,k
′ ∈ ΛI

j,

L RR
j:k′k = ∑

b2 j−1
l1=b2 j−2K+2 ∑

b2 j−1
l2=b2 j−2K+2(N

R)−1
k′−b2 j,l1−b2 j(NR)−1

k−b2 j,l2−b2 j

wR
jl1wR

jl2L (x̄R
jl1 , ȳ

R
jl2 , f (ȳR

jl2)), if k ∈ ΛR
j ,k
′ ∈ ΛR

j .
(14)

(Ns)−1
u,v are the entries of the inverse of the matrix formed by the normalization coefficients Ns

u,v (s =
L, I,R). The numerical values of both (Ns)−1

u,v and Ns
u,v (s = L, I,R) are available in [17].
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4 The numerical method

Substituting the approximate form of the unknown function f (x), forcing term q(x) and the kernel func-
tion L (x,y, f (y)) in (1), we obtain

∑
k∈Λ j

f s
jkφ

s
jk(x)+λ ∑

k′∈Λ j
∑

k∈Λ j

L s′s
j:k′kφ

s′
jk′(x)

∫ b

a
φ

s
jk(y)dy = ∑

k∈Λ j

qs
jkφ

s
jk(x). (15)

Setting Γs
j:k =

∫ b
a φ s

jk(y)dy, the equation (15) is written as

∑
k∈Λ j

f s
jkφ

s
jk(x)+λ ∑

k′∈Λ j
∑

k∈Λ j

L s′s
j:k′kφ

s′
jk′(x)Γ

s
j:k = ∑

k∈Λ j

qs
jkφ

s
jk(x). (16)

Γs
j:k can be evaluated using the one-point quadrature rule. It is evident that the values of Γs

j:k are iden-
tical with ws

jk, given by (5). Multiplying both sides of the equation (16) by φ s
jk1
(x) (k1 = a2 j− 2K +

2, . . . ,b2 j−1) and integrating over [a,b], we find

∑
k∈Λ j

f s
jkNs

kk1
+λ ∑

k′∈Λ j
∑

k∈Λ j

L s′s
j:k′kΓ

s
j:kNs′

k′k1
= ∑

k∈Λ j

qs
jkNs

kk1
. (17)

As the raw images f s
jk,q

s
jk and L s′s

j:k′k are expressed using the weights and nodes of one-point quadra-
ture rule, so equation (17) represents a nonlinear system of (b− a)2 j + 2K− 2 number of equations in
f (x̄s

jk) (k = a2 j− 2K + 2, . . . ,b2 j− 1). The raw images f s
jk can be evaluated only when the values of

f (x̄s
jk) can be found by solving the nonlinear system (17) by any standard numerical method such as

Newton’s method, Broyden’s method, iteration method, Seidal iteration or by using softwere such as
MATLAB, MATHEMATICA, Python etc. The unknown function f (x) then can be evaluated at any
point in the interval [a,b] using the expression (9).

As a system of nonlinear equations may have more than one solution, one important question arises
at this stage is: Can the system (17) be solved to determine the required solution? In every standard nu-
merical method such as Newton’s method, Broyden’s method, Iteration method, Seidal iteration method,
suitable initial approximation is needed which is closed to the required solution. A wrong choice of
initial approximation may lead to three situations - the method may diverge; a large number of iteration
may be needed; the method may converge to different solution of the system. The code “NSolve[expr,
vars]” can be used in MATHEMATICA to find all the possible approximations of the solutions of the sys-
tem including complex solutions. Again, the code “NSolve[expr, vars, Real]” finds the solution over the
domain of real numbers. These two codes are suitable for the system containing maximum three or four
variables. For the system containing more variables, the simulation code does not give the required re-
sults. The code “FindRoot[{equ1,equ2, . . . ,equn} ,{x1,x1(0)} ,{x2,x2(0)} , . . . ,{xn,xn(0)}]” enumerate
the solution of a system of n number of equations having n number of variables with initial approxima-
tion [x1(0),x2(0), . . . ,xn(0)]. It is evident that the system (17) can be solved to find the required solution
if a suitable initial approximation can be found.

It is a somewhat complicated task to determine an initial approximation of the solution of the system
(17), as the nature of f (x) is completely unspecified except its continuity. As f (x) is defined on a closed
and bounded interval [a,b], so the images of f form a bounded set. The nodes x̄s

jk (k = a2 j−2K+2,a2 j−
2K + 3, . . . ,b2 j− 1) for one-point quadrature rule belongs to (a,b). We consider two different starting
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points of the solution, one is
{

q(a)+ ε,q(a)+2ε,q(a)+3ε, . . . ,q(a)+((b−a)2 j +2K−2)ε)
}

and the
other is

{
q(a)− ε,q(a)−2ε,q(a)−3ε, . . . ,q(a)− ((b−a)2 j +2K−2)ε)

}
of trial and error method.

Taking these two starting points, we measure CPU time for solving nonlinear system for each case. The
initial approximation which corresponds to lower CPU time is taken as starting point. For different
choices of ε(≥ 0), we get different initial approximations. Sometime, the forcing term q(x) may not
be defined at the starting point x = a of the domain [a,b]. In that case x = a+ δ (δ > 0,very small)
is to be considered instead of x = a. Though the starting point for applying “FindRoot[ ]” code in
MATHEMATICA can be guessed here by trial and error method but it has no theoretical basis. The
practical aspect of such selection is verified by taking a large number of illustrative examples.

5 Error estimation

As the equation (17) represents a system of (b−a)2 j+2K−2 number of nonlinear equations in f (x̄s
jk) (k=

a2 j−2K +2, . . . ,b2 j−1), we assume that the system can be written as

Gi( f (x̄L
ja2 j−2K+2), . . . , f (x̄I

ja2 j), . . . , f (x̄R
jb2 j−1)) = 0 ,(i = 1,2, . . .(b−a)2 j +2K−2). (18)

Setting f (x̄s
jk) = η

j
k−(a2 j−2K+1), the system (18) can be written as

Gi(η
j

1 ,η
j

2 , . . . ,η
j
(b−a)2 j+2K−2) = 0. (19)

We assume that (ξ j
1 ,ξ

j
2 , . . . ,ξ

j
(b−a)2 j+2K−2) is the approximation to the exact results (ζ j

1 ,ζ
j

2 , . . . ,

ζ
j
(b−a)2 j+2K−2) at resolution level j. If ∆ξ

j
i (i = 1,2, . . . ,(b−a)2 j +2K−2) is the error in the deremina-

tion of ξ
j

i , then ξ
j

i +∆ξ
j

i (= ζ
j

i ) satisfies

Gi(ξ
j

1 +∆ξ
j

1 ,ξ
j

2 +∆ξ
j

2 , . . . ,ξ
j
(b−a)2 j+2K−2 +∆ξ

j
(b−a)2 j+2K−2) = 0. (20)

Taylor series expansion about (ξ j
1 ,ξ

j
2 , . . . ,ξ

j
(b−a)2 j+2K−2) gives

Gi(ξ
j

1 ,ξ
j

2+, . . . ,ξ j
(b−a)2 j+2K−2)+

(
(b−a)2 j+2K−2

∑
i=1

∆ξ
j

i
∂

∂ξ
j

i

)
Gi(ξ

j
1 ,ξ

j
2+, . . . ,ξ j

(b−a)2 j+2K−2)

+
1
2!

(
(b−a)2 j+2K−2

∑
i=1

∆ξ
j

i
∂

∂ξ
j

i

)2

Gi(ξ
j

1 ,ξ
j

2+, . . . ,ξ j
(b−a)2 j+2K−2)+ · · ·= 0.

(21)

As ∆ξ
j

i (i = 1,2,3, . . . ,(b−a)2 j +2K−2) are very small, so neglecting the second and higher power of
∆ξ

j
i , we get

Gi(ξ
j

1 ,ξ
j

2+, . . . ,ξ j
(b−a)2 j+2K−2)+

(
(b−a)2 j+2K−2

∑
i=1

∆ξ
j

i
∂Gi

∂ξ
j

i

)
= 0. (22)

The above system can be written in matrix form as

J̃∆=−F̃, (23)
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where

J̃ =



∂G1

∂ξ
j

1

∂G1

∂ξ
j

2

· · · ∂G1

∂ξ
j
(b−a)2 j+2K−2

∂G2

∂ξ
j

1

∂G2

∂ξ
j

2

· · · ∂G2

∂ξ
j
(b−a)2 j+2K−2

...
... · · ·

...
∂G(b−a)2 j+2K−2

∂ξ
j

1

∂G(b−a)2 j+2K−2

∂ξ
j

2

· · ·
∂G(b−a)2 j+2K−2

∂ξ
j
(b−a)2 j+2K−2


(ξ

j
1 ,ξ

j
2 ,...,ξ

j
(b−a)2 j+2K−2

)

, (24)

and

∆=


∆ξ

j
1

∆ξ
j

2
...

∆ξ
j
(b−a)2 j+2K−2

 , F̃ =


G1(ξ

j
1 ,ξ

j
2 , . . . ,ξ

j
(b−a)2 j+2K−2)

G2(ξ
j

1 ,ξ
j

2 , . . . ,ξ
j
(b−a)2 j+2K−2)

...
G(b−a)2 j+2K−2(ξ

j
1 ,ξ

j
2+, . . . ,ξ j

(b−a)2 j+2K−2)

 . (25)

The matrix ∆ which contains errors ∆ξ
j

i as its elements is determined as ∆ = −J̃−1F̃ and its norm is
determined from the inequality

‖∆‖=
∥∥J̃−1F̃

∥∥≤ ∥∥J̃−1∥∥∥∥F̃
∥∥ . (26)

Here, ‖.‖ indicates a suitable norm such as Euclidean norm, maximum norm, spectral norm, etc.

6 Numerical illustration

The method is illustrated numerically by considering the following three examples.

Example 1. Consider the nonlinear integral equation [1]

f (x)−
∫ 1

0
xy[ f (y)]2dy =−1

4
(x−4ex + xe2), 0≤ x≤ 1. (27)

This integral equation is of the Hammerstein type and has the exact solution f (x) = ex. The system
(17) corresponding to this example is solved here by using the code “FindRoot[ ]” in MATHEMATICA

with
{

q(a)+ ε,q(a)+2ε, . . . ,q(a)+((b−a)2 j +2K−2)ε)
}

as the starting point. ε = 0.2 and ε = 0.15
are chosen for the level j = 4 and j = 5 respectively and K = 3 is selected in both resolution level. In
Table 1, a comparison between the exact and approximate solutions are shown for Example 1 at the
intermediate points s

8 (s = 0,1,2, . . . ,8) for j = 4,5. In Fig. 1, the exact and approximate forms of the
kernel are depicted for Example 1. Actually, Fig. 1, shows the efficiency of Daubechies scale functions
as basic building block in the approximation of functions of several variables. In Fig. 2, the exact and
approximate forms of the unknown function f (x) are depicted for Example 1.

Example 2. Consider the nonlinear integral equation [12]

f (x)−
∫ 1

0

4xy+πxsin(πy)
( f (y))2 + y2 +1

dy = sin(
π

2
x)−2x ln(3), 0≤ x≤ 1. (28)
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Table 1: Exact and approximate solutions of Example 1.

x Exact solution Approximate solution
j = 4 j = 5

0 1 0.988488 0.988028
1/8 1.1331485 1.112890 1.133145
2/8 1.2840254 1.284001 1.284022
3/8 1.4549914 1.454964 1.454988
4/8 1.6487231 1.648698 1.648717
5/8 1.8682460 1.868210 1.868241
6/8 2.1170000 2.116960 2.116995
7/8 2.3988753 2.399263 2.398869
1 2.7182818 2.718243 2.718283

0.0

0.5

1.0
0.0

0.5

1.0

0

2

4

(a) Kernel’s exact form

0.0

0.5

1.0
0.0

0.5

1.0

0

2

4

(b) Kernel’s approximate form (K = 3, j = 5)

Figure 1: Comparison of the exact and approximate form of kernel for Example 1.

This nonlinear integral equation is of Uryshon type having nonseparable kernel and it has exact solution
f (x) = sin(π

2 x).
For Example 2,

{
q(a)+ ε,q(a)+2ε, . . . ,q(a)+((b−a)2 j +2K−2)ε)

}
is taken as starting point

with ε = 0.006 for j = 4 and ε = 0.0003 for j = 5. In Table 2, the approximate solution together with
exact solution are given at nine different intermediate dyadic points taking K = 3 at resolution level
j = 4 and j = 5. Also in Fig. 3 and Fig. 4, the approximate and analytical forms of kernel function and
unknown function are compared graphically for Example 2. From Fig. 3, it is clear that there is some
fluctuation in the kernel’s approximate values near x = 1 and y = 1.

Example 3. Consider the Hammerstein integral equation of mixed type [8]

f (x) = q(x)+
∫ 1

0
L (x,y, f (y))dy, 0 < x≤ 1, (29)
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Figure 2: Exact and approximate solutions of Example 1.

Table 2: Exact and approximate solutions of Example 2.

x Exact solution Approximate solution
j = 4 j = 5

0 0 0.001443 0.000722
1/8 0.19509032 0.197702 0.195100
2/8 0.38268343 0.382758 0.382693
3/8 0.55557023 0.555639 0.555579
4/8 0.70710678 0.707167 0.707114
5/8 0.83146961 0.831519 0.831475
6/8 0.92387953 0.923916 0.923884
7/8 0.98078528 0.980381 0.980788
1 1.00000000 0.999968 0.999989

where

q(x) =−x4

6
− x6

4
+ ln(x), (30)

and

L (x,y, f (y)) =
2

∑
i=1

Li(x,y, f (y)) (31)

with
L1(x,y, f (y)) = x4y4e f (y); L2(x,y, f (y)) = x6y{ f (y)}2 . (32)

The exact solution of this mixed type nonlinear integral equation is f (x) = ln(x). The integral equation
is called mixed type as the kernel L (x,y, f (y)) can be expressed as the sum of two different kernels
L1(x,y, f (y)) and L2(x,y, f (y)).

As the forcing function q(x) =− x4

6 −
x6

4 + ln(x) is not defined at x= a= 0, so we consider the starting
point as

{
q(0.001)+ ε,q(0.001)+2ε, . . . ,q(0.001)+((b−a)2 j +2K−2)ε)

}
with ε = 0.30 for j = 4

and
{

q(0.0008)+ ε,q(0.0008)+2ε, . . . ,q(0.0008)+((b−a)2 j +2K−2)ε)
}

with ε = 0.5 for j = 5 for
using “FindRoot[ ]” simulation code. In Table 3, the approximate and exact solution of Example 3 are
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(b) Kernel’s approximate form (K = 3, j = 5)

Figure 3: Comparison of the exact and approximate form of the kernel for Example 2.
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Figure 4: Exact and approximate solutions of Example 2.

displayed taking K = 3 and j = 4,5. In Fig 5 and Fig 6, a comparison between the exact and approximate
form of the kernel function and unknown function of Example 3 are shown graphically.

In Table 4, different types of norms ‖∆‖p (p = 1,2,∞) at j = 4,5 of the matrix ∆ are exhibited

for the three examples. Here, ‖∆‖1 = ∑
(b−a)2 j+2K−2
i=1 |∆ξ

j
i | is known as maximum absolute column sum

norm whereas ‖∆‖2 =
(

∑
(b−a)2 j+2K−2
i=1 |∆ξ

j
i |2
) 1

2
is the Euclidean norm or Frobenius norm. Also ‖∆‖

∞

is the maximum absolute row sum norm and is defined by ‖∆‖
∞
= max

1≤i≤(b−a)2 j+2K−2
|∆ξ

j
i |. The bar

diagrams obtained by taking data from Table 4 are displayed in Fig. 7. The bar diagrams for each
example describe the reverse proportional relation between norm of the error matrix ∆ and resolution
level j. Observing the bar diagrams, it is clear that the norm of the error matrix decreases more rapidly
for Example 1. From Table 4 and Fig. 7, it can be concluded that the errors in the calculation of the
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Table 3: Exact and approximate solutions of Example 3.

x Exact solution Approximate solution
j = 4 j = 5

1/8 -2.07944154 -2.087967 -2.086196
2/8 -1.38629436 -1.393049 -1.386774
3/8 -0.98082925 -0.982164 -0.980952
4/8 -0.69314718 -0.693627 -0.693195
5/8 -0.47000363 -0.470229 -0.470028
6/8 -0.28768207 -0.287805 -0.287696
7/8 -0.13353139 -0.133820 -0.133540
1 0.00000000 -0.000099 -0.000014
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(a) Kernel’s exact form
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(b) Kernel’s approximate form (K = 3, j = 5)

Figure 5: Comparison of exact and approximate form of the kernel for Example 3.

unknowns of the nonlinear system of equations can be minimized taking relatively higher resolution
level j.

7 Conclusion

Nonlinear integral equations are used to model various physical phenomena but they are generally diffi-
cult to solve in closed form. Due to this reason, an efficient wavelet-based numerical scheme has been
proposed to find approximate numerical solution of nonlinear Fredholm integral equation of second kind
having smooth kernels. One of the major advantages of this method is that the scheme can be applied for
any kind of smooth kernel including separable as well as nonseparable kernels. Also, complicated oper-
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Figure 6: Exact and approximate solutions of Example 3.

Table 4: Different type of the norms of error matrix ∆.

Resolution level
( j)

‖∆‖1 ‖∆‖2 ‖∆‖
∞

Example 1
4 7.41903 4.60869 3.55184
5 0.46210 0.19992 0.14166
Example 2
4 0.21996 0.11745 0.08203
5 0.05814 0.03145 0.02156
Example 3
4 0.01337 0.00779 0.00634
5 0.00883 0.00445 0.00321

ations do not arise in the present scheme. The idea of the scheme can also be implemented for nonlinear
integral equations having singular kernels but appropriate modification is needed. Inclusion of three il-
lustrative examples shows that the present method is quite efficient to provide satisfactory results. The
results can be improved by taking higher resolution level which is reflected from our numerical data. It is
better to select moderate ( j = 3,4,5) resolution level as for higher resolution level, more computational
time will be required in solving nonlinear system of equations.
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(a) Example 1. (b) Example 2.

(c) Example 3.

Figure 7: Comparison of different norms ‖∆‖p (p = 1,2,∞) at j = 4,5.
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