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Abstract. In this paper, an efficient finite difference method is presented for solving singularly per-
turbed linear second order parabolic problems with large time lag. The comparable numerical model is
related to automatically controlled system with spatial diffusion of reactants in the processes. This study
focuses on the formation of boundary layer behavior or oscillatory behaviors due to the presence of delay
parameters and perturbation parameter. The numerical scheme comprising an exponentially fitted spline
based difference scheme on a uniform mesh supported by Crank-Nicolson Method is constructed. It is
found that the present method converges with second order accurate in both temporal and spatial vari-
ables. The convergence analysis and running time of the program with varied grid sizes are then used to
do the efficiency analysis. The proposed scheme accuracy and efficiency are also demonstrated through
numerical experiments.

Keywords: Singular perturbation, parabolic convection-diffusion, large time delay, exponentially fitted method,
parameter uniform convergence.
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1 Introduction

In many practical applications larger systems of ordinary or partial differential equations can be quite
good at approximating observed behavior, but the difficulties with those cases come from the involvement
of various parameters. To deal with such difficulties several approaches have been developed in [11,13].
Nowadays delay differential equations are used to describe many physical phenomena of interest in sci-
ence and engineering and its numerical approximation still on rapid growth (see e.g., [2,5,8,12,14,21]).
Depending on the response of the system many applications can be delayed in a more complicated way.
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There are many examples where time delay and spatial diffusion enter control systems [6, 17–19]. Nu-
merous models of delay parabolic partial differential equations can be found in [22]. Simplified math-
ematical description of the overall control system in the form of singularly perturbed delay parabolic
partial differential equation was given in the paper [1]. In recent years there has been a developmental
activity in the numerical study of singularly perturbed time delay parabolic partial differential equa-
tions of convection-diffusion type. Numerical schemes such as, uniformly convergent hybrid numerical
scheme by Das and Natesan [3], second-order uniformly convergent numerical method by Das and Nate-
san [4], ε-uniformly convergent numerical scheme by Gowrisankar and Natesan [7], parameter-uniform
numerical scheme by Kumar and Kumari [9], and new stable finite difference (NSFD) scheme by Podila
and Kumar [16]. To our knowledge, no exponentially fitted approach based on spline has yet yielded
results in approximating the solution of singularly perturbed parabolic partial differential equations with
large-time delay. This partially motivated our interest to enhance suitable numerical approach for numer-
ical strategies to deal with the oscillatory nature of the solutions when the perturbation parameter ε will
become very small whose accuracy does not depend on the parameter value ε .

The main aim of this article is to construct and analyze the exponentially fitted spline based technique
to provide better approximate numerical solution for the singularly perturbed parabolic partial differential
equations with large-time lag. Since the solution of the singularly perturbed parabolic partial differential
equations with large-time lag exhibits boundary layer, we discretize the domain by uniform mesh in
both time and spatial directions. In this method the time derivative is approximated by Crank-Nicolson
method, and the spatial derivatives are approximated by the exponentially fitted spline-based approach.
The advantage of this method is that, it is not required to have any restriction on the mesh generation.

2 Continuous problem

We consider the following initial-boundary value problems (IBVPs) for a singularly perturbed time-delay
parabolic convection-diffusion equation

£εu≡−εuxx(x, t)+a(x, t)ux(x, t)+b(x, t)u(x, t)

=−c(x, t)u(x, t− τ)+ f (x, t)− ∂u
∂ t

, (x, t) ∈ D,
(1)

with the boundary conditions{
u(0, t) = φl(t), Γl = {(0, t) : 0≤ t ≤ T},
u(1, t) = φr(t), Γr = {(1, t) : 0≤ t ≤ T},

(2)

and the interval initial condition

u(x, t) = φb(x, t), (x, t) ∈ Γb = [0,1]× [−τ,0]. (3)

Here Ωx = (0,1), D = Ωx× (0,T ], Γ = Γl ∪Γb∪Γr, where Γl and Γr are the left and the right side
of the rectangular domain D corresponding to x = 0 and x = 1, respectively and Γb = [0,1]× [−τ,0],
0 < ε � 1 is a singular perturbation parameter and τ > 0 represents the delay parameter and the data
a(x, t),b(x, t), f (x, t) on D and φb(x, t),φl(t),φr(t) on Γ are sufficiently smooth, bounded functions that
satisfy

a(x, t)≥ α > 0, b(x, t)≥ β > 0, (x, t) ∈ D.
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2.1 Properties of continuous solution

The existence and uniqueness of the solution for the model problem Eqs. (1)-(3) can be guaranteed by
the sufficient smoothness of φl(t),φb(x, t) and φr(t) along with appropriate compatibility conditions at
the corner points (0,0),(1,0),(0,−τ) and (1,−τ), and delay terms as stated below:{

φb(0,0) = φl(0),
φb(1,0) = φr(0),

(4)

and {
∂φl(0)

∂ t − ε
∂ 2φb(0,0)

∂x2 +a(0,0) ∂φb(0,0)
∂x +b(0,0)φb(0,0) =−c(0,0)φb(0,−τ)+ f (0,0),

∂φr(0)
∂ t − ε

∂ 2φb(1,0)
∂x2 +a(1,0) ∂φb(1,0)

∂x +b(1,0)φb(1,0) =−c(1,0)φb(0,−τ)+ f (1,0).
(5)

Setting ε = 0, the reduced problem corresponding to Eqs. (1)-(3) is given by

∂u0

∂ t
+a(x, t)u0(x, t) =−b(x, t)u0(x, t− τ)+ f (x, t), (x, t) ∈ D, (6)

with the boundary conditions{
u0(0, t) = φl(t), Γl = {(0, t) : 0≤ t ≤ T},
u0(1, t) 6= φr(t), Γr = {(1, t) : 0≤ t ≤ T},

(7)

and the interval initial condition

u0(x, t) = φb(x, t), (x, t) ∈ (x, t) ∈ Γb = [0,1]× [−τ,0]. (8)

Therefore, it is clear that the solution of Eqs. (1)-(3) has a boundary layers on Γr. In this study, our aim is
to obtain and examine the approximate solution to observe the effect of the parameter ε on the boundary
layer.

Lemma 1 (Continuous maximum principle). Assume that the function η(x, t) ∈C2 (D)∩C0 (D̄). Sup-
pose that £εη(x, t) ≥ 0 for all (x, t) ∈ D and η(x, t) ≥ 0 for all (x, t) ∈ Γ. Then η(x, t) ≥ 0 for all
(x, t) ∈ D̄.

Proof. Let (ξ ,ϑ)∈D be such that η (ξ ,ϑ) = min(x,t)∈D̄ η (x, t) and suppose η (ξ ,ϑ)< 0. It is clear that
(ξ ,ϑ) /∈ Γ as η(x, t)≥ 0 on Γ. Since at the point (ξ ,ϑ) the function η attains minimum, then, we have
ηx (ξ ,ϑ) = ηt (ξ ,ϑ) = 0 and ηxx (ξ ,ϑ)≥ 0 at point (ξ ,ϑ). Using £ε on η(x, t), from Eq. (2) we have

£εη (ξ ,ϑ) = ηt (ξ ,ϑ)− εηxx(ξ ,ϑ)+a(ξ ,ϑ)ux(ξ ,ϑ)+b(ξ ,ϑ)η(ξ ,ϑ),

since ηxx(ξ ,ϑ) > 0,ηt (ξ ,ϑ) = ηx (ξ ,ϑ) = 0 we get £εη (ξ ,ϑ) < 0, which contradicts the given as-
sumption as £εη(x, t)≥ 0 in D. Hence, we have η(x, t)≥ 0 for all (x, t) ∈ D̄.

Using maximum principle given in Lemma 1 and compatibility conditions in Eqs. (4) and (5) we
can say that there exists a constant C independent of ε such that for all (x, t) ∈ D we have the following
Lemmas.
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Lemma 2. The solution u(x, t) of the continuous problem in Eqs. (1)-(3) satisfies the following estima-
tion:

|u(x, t)−φb (x,0) | ≤Ct.

Proof. For the proof reader can refer to Das and Natesan [3].

Lemma 3. The bound on the solution u(x, t) of the continuous problem in Eqs. (1)-(3) satisfy the follow-
ing bound:

|u(x, t)| ≤C, (x, t) ∈ D̄.

Proof. From Lemma 2, we have

|u(x, t) |− |φb (x,0) | ≤ |u(x, t)−φb (x,0) | ≤Ct.

Hence,
u(x, t)≤Ct +φb (x,0) , ∀(x, t) ∈ D̄.

Since t ∈ (0,T ], so it is bounded and φb (x,0) ∈ C2 (D̄). Therefore, Ct + φb (x,0) is bounded by some
constant C and hence |u(x, t)| ≤C, (x, t) ∈ D̄.

Lemma 4. [3] The bounds on the derivatives of the exact solution u(x, t) of the model problems in Eqs.
(1)-(3) satisfies ∣∣∣∣ ∂ i+ ju

∂xi∂ t j

∣∣∣∣≤C
(
1+ ε

−i exp(−α (1− x)/ε)
)
,∀(x, t) ∈ D̄,

where i and j are non-negative integers such that 0≤ i+ j ≤ 5.

3 Numerical schemes

3.1 The time semidiscretization

In this section, a numerical scheme which works nicely when delay parameter τ are larger than pertur-
bation parameter ε . Now, for the delay term u(x, t− τ) we construct a special type of mesh so that the
terms containing the delay parameter τ lie on the mesh points after discretization. This can be done as
first dividing the given interval [−τ,0] into s equal parts with spacing ∆t = τ/s and use the same spacing
for the interval [0,T ]. Thus, the mesh for [0,T ] is defined as

Ω̄
M
t = {tn = n∆t, n = 0,1, . . . ,T/∆t} ,

where M = T/∆t is the total number of mesh elements in the temporal direction in the interval [0,T ] and
so the mesh in the interval [−τ,T ] is defined as

Ω̄
s
Γ = {tn = n∆t, n = 0,1, ...,s, ∆t = τ/s} ,

where Ω̄ s
Γ

and Ω̄ M are the uniform meshes discretized with step size ∆t such that s and M mesh elements
are used on [−τ,0] and [0,T ], respectively. Then u(x, t − τ) is a known function on [0,1]× [0,τ] and
Eqs. (1)-(3) becomes a classical singularly perturbed parabolic partial differential equations, and can
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be treated using the known existence theories. Discretization of the time derivative by means of the
Crank-Nicolson’s method in Eqs. (1)-(3) on Ω× Ω̄ M yields the following,

Un+1 (x)−Un (x)
∆t

− ε (Uxx)
n+1/2 (x)+an+1/2 (x)(Ux)

n+1/2 (x)+bn+1/2 (x)Un+1/2 (x)

=−cn+1/2(x)Un+1/2−s (x)+ f n+1/2 (x) ,

Un+1 (0) = φl (tn+1) , 0≤ n≤M,

Un+1 (1) = φr (tn+1) , 0≤ n≤M,

Un+1 (x) = φb (x, tn+1) , x ∈Ωx,−(s+1)≤ n≤−1,

(9)

where Un+1/2 (x) =
(
Un+1 (x)+Un (x)

)
/2 and Un+1(x) is an approximate solution of u(x, tn+1) at (n+

1)th time level.
Using differential operator and discretization process of Eq. (9) yields the following semi-discrete

method,

(
I +

∆t
2

£∗ε

)
Un+1(x) =



U(x, tn)+
∆t
2
(
Λ̂

n(x)+ Λ̂
n+1(x)−£εU(x, tn)

)
,

n = 0,1, . . . ,s, x ∈Ωx,

U(x, tn)+
∆t
2
(
Λ

n(x)+Λ
n+1(x)−£εU(x, tn)

)
,

n = s+1, . . . ,M−1, x ∈Ωx,

Un+1 (0) = φl (tn+1) , Un+1 (1) = φr (tn+1) ,

0≤ n≤M,

(10)

where

Λ̂
n(x) = −c(x, tn)φb (x, tn+1))+ f (x, tn),

Λ
n(x) = −c(x, tn)u(x, tn−s))+ f (x, tn),

£∗εU(x, tn+1) = −εuxx(x, tn+1)+a(x, tn+1)ux(x, tn+1)+b(x, t)u(x, tn+1).

The semidiscrete operator
(
I + ∆t

2 £∗ε
)

Un+1(x) in Eq. (10) satisfies the maximum principle as follows.

Lemma 5 (Semi-discrete maximum principle). Let Πn+1 (x) be a smooth function such that Πn+1 (0)≥
0 and Πn+1 (1)≥ 0. Then £∗εΠn+1 (x)≥ 0 for all x ∈ D, implies that Πn+1(x)≥ 0 for all x ∈ D̄.

Proof. Let (ξ , tn+1) ∈ {(x, tn+1) : x ∈ D̄} be such that Πn+1 (ξ ) = min(x)∈D̄ Πn+1 (x) and Πn+1 (x)< 0. It
is clear that (ξ , tn+1) /∈ {(0, tn+1) ,(1, tn+1)} as Πn+1(x)≥ 0 on {0,1}. Then, we have Πn+1

x (ξ ) = 0 and
Πxx (ξ )≥ 0 and thus,(

I +
∆t
2

£∗ε

)
Un+1(ξ ) =−ε

2
(Πxx)

n+1 (ξ )+
an+1/2 (ξ )

2
(Πx)

n+1 (ξ )+
bn+1/2 (ξ )

2
Π

n+1 (ξ )

≤ bn+1/2 (ξ )

2
Π

n+1 (ξ )< 0,

which contradicts our supposition and Πn+1(ξ )≥ 0. This implies Πn+1(x)≥ 0 for all (x) ∈ D̄.
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The local truncation error en+1 of the temporal semi-discretization Eq. (10) is given by Un(x)−
u(x, tn) where u(x, tn) and Un(x) are the exact and approximate solution of the problem in Eqs. (1)-(3).
Now we follow the following lemma for the error estimation en+1.

Lemma 6 (Local error estimate). Suppose that Lemma 4 hold. Then the local error estimation associ-
ated to the semi-discretized problem Eq. (10) is given by ‖en+1‖ ≤C (∆t)3 .

Proof. The proof follows easily from [9].

Lemma 7 (Global error estimate). The global error estimation in the temporal direction is given by

‖En+1‖ ≤C (∆t)2 ,

where En+1 is the global error in the temporal direction at (n+1) th time level.

Proof. Using local error estimates given in Lemma 6, the global error estimate at the (n+1) th time step
is given by

‖En‖=

∥∥∥∥∥ n

∑
k=1

ek

∥∥∥∥∥ ,
(

n≤ T
∆t

)
≤ ‖e1‖+‖e2‖+ · · ·+‖en‖
≤C0 ((n)∆t)2 (∆t) (using Lemma 6 )

≤C0T (∆t)2 , (since n(∆t)≤ T )

≤C (∆t)2 , C =C0T,

where C is constant independent of ε and ∆t.

Using the following Lemma we bound for the derivatives of solution of Eq. (10).

Lemma 8. [9] The solution Un(x) of semi-discretized problem in Eq. (10) and its derivatives satisfy∣∣∣∣diUn+1(x)
dxi

∣∣∣∣≤C
(
1+ ε

−iexp(−α (1− x)/ε)
)
, ∀(x, t) ∈ D̄, i = 0,1,2,3.

3.2 The spatial discretization

In this section we keep the temporal direction as a constant and for the spacial direction we consider a
uniform mesh with nodal points xm on the spatial domain [0,1] such that: 0 = x0 < x1 < · · · < xN = 1,
h = xm− xm−1 = 1/N. Now, if we regard

g(t,x,u(x, t),ux (x, t)) =−c(x, t)u(x, t− τ)+ f (x, t)−a(x, t)ux(x, t)−b(x, t)u(x, t)−ut(x, t), (11)

then Eq. (1) becomes
− εuxx(x, t) = g(t,x,u(x, t),ux (x, t)) . (12)
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Taking the Taylor expansion for first order derivative of u(t), we get the following fourth order approxi-
mations: 

ux(xm, t)≈
um+1(t)−um−1(t)

2h
,

ux(xm+1, t)≈
3um+1(t)−4um(t)+um−1(t)

2h
,

ux(xm−1, t)≈
−um+1(t)+4um(t)−3um−1(t)

2h
,

ûx(xm, t)≈ ux(xm, t)−
1
12

(ĝm+1 (t)− ĝm−1 (t)) ,

(13)

and

− εσ (ρ)
δ 2

x U (t)
h2 =

1
12

(ĝm+1 (t)+10ḡm (t)+ ĝm−1 (t)) , (14)

where

δ
2
x Um (t) = Um−1 (t)−2Um (t)+Um+1 (t) ,

ḡ = g(t,xm,u(xm, t), ûx(xm, t)) ,

ĝm±1 = g(t,xm±1,u(xm±1, t),ux(xm±1, t)) ,

and σ (ρ) is an artificial viscosity which is to be determined in the next section.

3.2.1 Computation of the artificial viscosity

Here, the main aim is to determine the value of the introduced artificial viscosity σ (ρ). From the theory
of singular perturbations described in O’Malley [15] and taking the Taylor’s series expansion for a(x, t)
about the point ‘1’, and restricting to their first terms, the solution of Eqs. (1)-(3) can be written in form

u(x, t) = u0(x, t)+(φr−u0(1, t))exp
(
−a(1, t)(1− x)

ε

)
+O(ε), (15)

with u0(x, t) is the solution of the reduced problems in Eqs. (1)-(3) obtained by setting ε = 0. Also from
Eq. (15), we obtain

u(mh, t) = u0(mh, t)+(φr−u0(1, t))exp
(
−a(1, t)

ε
(1−mh)

)
.

Therefore,

lim
h→0

u(mh, t) = u0(0, t)+(φr−u0(1, t))exp
(
−a(1, t)

(
1
ε
−mρ

))
, (16)

where ρ = h/ε . Now, multiplying Eq. (14) by h and evaluating the limit as h→ 0 gives:

lim
h→0

[
σ (ρ)

ρ

(
um+1 (t)−2um (t)+um−1 (t)

)]
+

1
2

a(mh, t)(um+1 (t)−um−1 (t)) = 0. (17)

Using Eq. (16) into Eq. (17) and taking a(x, t) = a = constant, b(x, t) = b = constant and on simplifying,
we get
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σ (ρ) = ρa(1,t)
2 coth(ρa(1,t)

2 ).

So for equation with a variable coefficient we define the artificial viscosity for the parameter ε as

σ (ρ) = ρa(xm,t)
2 coth(ρa(xm,t)

2 ).

3.3 Fully discrete scheme

In this section, we combine the obtained schemes in Eqs. (10) and (14). Now, introducing the artificial
viscosity σ1 (ρ) and σ2 (ρ) at both (m,n+1)th and (m,n)th level respectively, we arrive at the following
difference scheme:

(
q−m +

∆t
2

r−m

)
Un+1

m−1 +

(
qc

m +
∆t
2

rc
m

)
Un+1

m +

(
q+m +

∆t
2

r+m

)
Un+1

m+1 =(
q−m−

∆t
2

r̂−m

)
Un

m−1 +

(
qc

m−
∆t
2

r̂c
m

)
Un

m +

(
q+m−

∆t
2

r̂+m

)
Un

m+1

− ∆t
2

q−m
(
cn+1

m−1Hn+1
m−1 + cn

m−1Hn
m−1
)
− ∆t

2
qc

m
(
cn+1

m Hn+1
m + cn

mHn
m
)
−

∆t
2

q+m
(
cn+1

m+1Hn+1
m+1 + cn

m+1Hn
m+1
)
+

∆t
2

q−m
(

f n+1
m−1 + f n

m−1
)
+

∆t
2

qc
m
(

f n+1
m + f n

m
)
+

∆t
2

q+m
(

f n+1
m+1 + f n

m+1
)
,

(18)

and the coefficients are given by

r−m =−εσ1 (ρ)−
3
2

η1han+1
m−1−η2han+1

m +
1
2

η1han+1
m+1 +η1h2bn+1

m−1

−η1h2
(

h
2

an+1
m bn+1

m−1−
1
4

an+1
m
(
an+1

m+1 +3an+1
m−1

))
,

rc
m = 2εσ1 (ρ)+2η1han+1

m−1−2η1han+1
m+1 +2h2

η2bn+1
m −η1h2an+1

m
(
an+1

m+1 +an+1
m−1

)
,

r+m =−εσ1 (ρ)−
1
2

η1han+1
m−1 +η2han+1

m +
3
2

η1han+1
m+1 +η1h2bn+1

m+1

+η1h2
(

h
2

an+1
m bn+1

m+1 +
1
4

an+1
m
(
3an+1

m+1 +an+1
m−1

))
,

and 

r̂−m =−εσ2 (ρ)−
3
2

η1han
m−1−η2han

m +
1
2

η1han
m+1 +η1h2bn

m−1

−η1h2
(

h
2

an
mbn

m−1−
1
4

an
m
(
an

m+1 +3an
m−1
))

,

r̂c
m = 2εσ2 (ρ)+2η1han

m−1−2η1han
m+1 +2h2

η2bn
m−η1h2an

m
(
an

m+1 +an
m−1
)
,

r̂+m =−εσ2 (ρ)−
1
2

η1han
m−1 +η2han

m +
3
2

η1han
m+1 +η1h2bn

m+1

+η1h2
(

h
2

an
mbn

m+1 +
1
4

an
m
(
3an

m+1 +an
m−1
))

,

q−m = η1h2
(

1− h
2

an
m−1

)
−, qc

m = 2η2h2, q+m = η1h2
(

1+
h
2

an
m+1

)
,
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and Hn
m denotes the delayed term U(xm, tn− s) which is evaluated as

Hn
m =

{
φb(xm, tn), if tn < s, m = 0,1, . . . ,N,

Un−s
m , if tn ≥ s, m = 0,1, . . . ,N.

Also, the values for η1 and η2 are presented for η1 =
1

12 and η2 =
5
12 .

The rearrangement of fully discrete scheme in Eq. (13) after incorporating the boundary conditions
gives a linear system of the form

(
q−m +

∆t
2

r−mn

)
Un+1

m−1 +

(
qc

m +
∆t
2

rc
mn

)
Un+1

m +

(
q+m +

∆t
2

r+mn

)
Un+1

m+1

=

(
q−m−

∆t
2

r̂−mn

)
Un

m−1 +

(
qc

m−
∆t
2

r̂c
mn

)
Un

m +

(
q+m−

∆t
2

r̂+mn

)
Un

m+1 + F̂n
m,

Un+1 (0) = φl (tn+1) , Un+1 (1) = φr (tn+1) , 0≤ n≤ N,

Un+1 (x) = φb (x, tn+1) , x ∈Ωx, −(s+1)≤ n≤−1,

(19)

where

F̂n
m =−∆t

2
q−m
(
cn+1

m−1Hn+1
m−1 + cn

m−1Hn
m−1
)
− ∆t

2
qc

m
(
cn+1

m Hn+1
m + cn

mHn
m
)

− ∆t
2

q+m
(
cn+1

m+1Hn+1
m+1 + cn

m+1Hn
m+1
)
+

∆t
2

q−m
(

f n+1
m−1 + f n

m−1
)

+
∆t
2

qc
m
(

f n+1
m + f n

m
)
+

∆t
2

q+m
(

f n+1
m+1 + f n

m+1
)
.

4 Uniform convergence analysis

The linear system developed in Eq. (19) can be put in standard matrix equation form as:

AV n+1 = BV n +Gn, (20)

where A and B is the tridiagonal operator defined by:
A =

(
A0 +

∆t
2

A1

)
,

B =

(
A0−

∆t
2

A2

)
,

(21)

where

A0 =


1 0 0 0 . . . 0

q−2 qc
2 q+2 0 . . . 0

. . . . . . . . . . . . . . . . . .
0 . . . 0 q−N qc

N q+N
0 . . . 0 0 0 1

 , A1 =


1 0 0 0 . . . 0

r−2 rc
2 r+2 0 . . . 0

. . . . . . . . . . . . . . . . . .
0 . . . 0 r−N rc

N r+N
0 . . . 0 0 0 1

 ,
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A2 =


1 0 0 0 . . . 0

r̂−2 r̂c
2 r̂+2 0 . . . 0

. . . . . . . . . . . . . . . . . .
0 . . . 0 r̂−N r̂c

N r̂+N
0 . . . 0 0 0 1

 , V n+1 =


Un+1

1
Un+1

2
Un+1

3
...

Un+1
N+1

 , V n =


Un

1
Un

2
Un

3
...

Un
N+1

 , Gn =


F̂n

1
F̂n

2
F̂n

3
...

F̂n
N+1

 .

Lemma 9. Let A be a coefficient matrix of the tridiagonal of the difference scheme in Eq. (18). Then, for
all ε > 0, the matrix A at each temporal level is an irreducible M-matrix and so has a positive inverse.

Proof. The difference scheme in Eq. (20) can be written in the form

AUn+1 +Hn
m +T E = 0, (22)

where Hn
m =−BUn−Gn. In Eq. (22) the related vectors are

T E = O
(
h4) ,U = [U1,U2, . . . ,UN+1]

T ,T E = [E1,E2, . . . ,EN+1]
T ,

and
0 = [0,0, . . . ,0]T .

Let vn+1
m =

[
un+1

1 ,un+1
2 , . . . ,un+1

N+1

]T ≈U and E =Un+1−vn+1 be the difference between the approximate
and exact solutions at level n+1. If we replace the exact solution with the numerical solution in Eq. (20)
at the mesh points of the difference equation, we obtain an equation of the form

Avn+1 = Bvn +Gn. (23)

Subtracting Eq. (22) from Eq. (23), gives

A
(
Un+1− vn+1)= T E. (24)

Let
∣∣an+1

m

∣∣≤C1 and
∣∣bn+1

m

∣∣≤C2. From Eq. (20) clearly we have,

∣∣r−m ∣∣= ∣∣∣∣−εσ1 (ρ)−
3
2

η1hC1−η2hC1 +
1
2

η1hC1 +η1h2C2

∣∣∣∣
+

∣∣∣∣−η1h2
(

h
2

C1C2−
1
4

C1 (C1 +3C1)

)∣∣∣∣> 0,

and ∣∣r+m ∣∣= ∣∣∣∣−εσ1 (ρ)−
1
2

η1hC1 +η2hC1
3
2

η1hC1 +η1h2C2

∣∣∣∣+
+

∣∣∣∣η1h2
(

h
2

C1C2 +
1
4

C1 (3C1 +C1)

)∣∣∣∣> 0.

From Eq. (20), the following estimation can be obtained∣∣r−m ∣∣+ ∣∣r+m ∣∣< |rc
m| ,
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where
|rc

m|=
∣∣2εσ1 (ρ)+2η1hC1−2η1hC1 +2h2

η2C2−η1h2C1 (C1 +C1)
∣∣ .

Therefore, for sufficiently small h, the tridiagonal matrix A given in Eq. (20) at each temporal level is an
irreducible M-matrix [20]. Thus, A is a nonsingular matrix and A−1 ≥ 0. Hence, from the error Eq. (24),
we have:

‖E‖ ≤
∥∥A−1∥∥‖T E‖ . (25)

As a result, the difference scheme in Eq. (20) satisfies the hypotheses of Lemma 9 and immediately
the required result follows. Hence, tridiagonal system in Eq. (20) can be easily solved by any existing
methods.

Following the approach given in [20], let Sm be the sum of the elements of the mth row of the tridiag-
onal matrix A, then division of Eq. (20) by h and for sufficiently small of h we can easily obtain:

Sm >
h2η1

2
C1C2, because εσ (ρ) =

hC1

2
coth

(
C1ρ

2

)
. (26)

Let (A)−1
m,k be the (m,k)th element of A−1 and we define,

∥∥A−1∥∥= max
1≤m≤N+1

N+1

∑
k=1,m 6=k

(A)−1
m,k ,

and
‖T E‖= max

1≤m≤N+1
|T Em| . (27)

Since A−1 ≥ 0, from the theory of matrices, we have ∑
N+1
k=1,m6=k (A)

−1
m,k Sk = 1 for 1 ≤ m ≤ N + 1. This

becomes
N−1

∑
k=1,m 6=k

(A)−1
m,k ≤

1
min

1≤m≤N+1
Sk
≤ 2

h2η1C1C2
. (28)

From Eqs. (26)-(28), we get:

‖E‖ ≤ 2
h2η1C1C2

×O
(
h4)≤Ch2. (29)

In Eq. (29), the value of C is independent of mesh size h. This shows, the spatial discretization process
is uniformly convergent of second order. From Lemma 7 and Eq. (29) it is observed that ‖E‖ → 0 as
∆t → 0 and h→ 0, which proves the consistency of the method. Using Lemma 7 and Eq. (29), and the
Lax equivalence theorem (see [10] ), we have the following main result .

Theorem 1 (Error in the fully discrete scheme). Let u be the solution of the problem in Eqs. (1)-(3)
and U be the approximation solution of fully discretized scheme obtained from the scheme in Eq. (19).
Then, we have the following parameter-uniform error estimation

‖u−U‖ ≤C
(
(∆t)2 +h2

)
,

where C > 0 is a constant and independent of ε .
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5 Numerical experiments

To estimate the ε-uniform convergence of the proposed method, we use the double mesh principle as the
exact solution of the problems are not known. The maximum pointwise errors EN,∆t

ε and the correspond-
ing order of convergence pN,∆t

ε are computed as

EN,∆t
ε = max

m,n

∣∣∣∣UN,∆t
m,n −U4N, ∆t

2
m,n

∣∣∣∣ , pN,∆t
ε = log2

(
EN,∆t

ε

E4N, ∆t
2

ε

)
,

and from these values we obtain the ε-uniform error EN,∆t and the corresponding ε-uniform order of
convergence pN,∆t by

EN,∆t = max
ε

EN,∆t
ε and pN,∆t = log2

(
EN,∆t

E4N, ∆t
2

)
,

where UN,∆t
m,n is the numerical solutions obtained by using N and M mesh intervals in space and time

direction, respectively. To compute U4N, ∆t
2

m,n we use 4N and 2M mesh intervals in spatial and temporal
direction, respectively.

Example 1. Consider the following singularly perturbed delay parabolic initial boundary value problem:

∂u
∂ t
− ε

∂ 2u
∂x2 +(2− x2)

∂u
∂x

+(x+1)(t +1)u(x, t) =−u(x, t− τ)+10t2 exp(−t)x(1− x),

(x, t) ∈ D = (0,1)× [0,2] ,

u(x, t) = 0,(x, t) ∈ [0,1]× [−1,0] ,

u(0, t) = 0,u(1, t) = 0, t ∈ [0,2] .

Example 2. Consider the following singularly perturbed delay parabolic initial boundary value problem:

∂u
∂ t
− ε

∂ 2u
∂x2 +(2− x2)

∂u
∂x

+ xu(x, t) =−u(x, t− τ)+10t2 exp(−t)x(1− x),

(x, t) ∈ D = (0,1)× [0,2] ,

u(x, t) = 0,(x, t) ∈ [0,1]× [−1,0] ,

u(0, t) = 0,u(1, t) = 0, t ∈ [0,2] .

The results tabulated for U4N, ∆t
2

m,n in Table 1 and Table 3 are obtained by taking 4N and 2M mesh
intervals for various values of ε , to confirm that the numerical methods presented in this paper are
second order ε-uniform convergent. Also, we can observe the ε - uniform convergence of the present
method from Table 2 and Table 4 as maximum point wise errors decrease when the numerical rates
of convergence increase as the number of mesh points in the spatial direction and temporal directions
increases. Graphs of the numerical solution of Example 1 for ε = 1,ε = 2−16 and N = 32,∆t = 0.1/4
are plotted in Figure 1. The two figures (Figure 1a and Figure 1b) also shows to visualize the appearance
of boundary layers in the solutions and to show the effect of the parameter ε on the boundary layer. We
have plotted the present numerical results of maximum pointwise errors in log-log scale for Example 1 in
Figure 2a and for Example 2 in Figure 2b. These graphs demonstrate the robustness and effectiveness of
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Table 1: Maximum pointwise errors EN,∆t
ε and rate of convergence pN,∆t

ε for Example 1.

ε↓ N = 8 N = 32 N = 128 N = 512
M = 16 M = 32 M = 64 M = 128

2−10 1.0147e-02 3.1183e-03 6.3516e-04 1.0991e-04
1.7022 2.2956 2.5308 −

2−12 1.0147e-02 3.1183e-03 6.4733e-04 1.4305e-04
1.7022 2.2682 2.1780 −

2−14 1.0147e-02 3.1183e-03 6.4733e-04 1.4315e-04
1.7022 2.2682 2.1770 −

2−16 1.0147e-02 3.1183e-03 6.4733e-04 1.4315e-04
1.7022 2.2682 2.1770 −

2−18 1.0147e-02 3.1183e-03 6.4733e-04 1.4315e-04
1.7022 2.2682 2.1770 −

2−20 1.0147e-02 3.1183e-03 6.4733e-04 1.4315e-04
1.7022 2.2682 2.1770 −

2−22 1.0147e-02 3.1183e-03 6.4733e-04 1.4315e-04
1.7022 2.2682 2.1770 −

2−24 1.0147e-02 3.1183e-03 6.4733e-04 1.4315e-04
1.7022 2.2682 2.1770 −

2−28 1.0147e-02 3.1183e-03 6.4733e-04 1.4315e-04
1.7022 2.2682 2.1770 −

2−30 1.0147e-02 3.1183e-03 6.4733e-04 1.4315e-04
1.7022 2.2682 2.1770 −

EN,∆t 1.0147e-02 3.1183e-03 6.4733e-04 1.4315e-04
pN,∆t 1.7022 2.2682 2.1770 -

Table 2: Maximum pointwise errors EN,∆t
ε of the scheme for Example 1.

ε↓ N = 32 N = 64 N = 128 N = 256 N = 512
M = 40 M = 80 M = 160 M = 320 M = 640

2−0 9.9905e-05 5.2752e-05 2.7153e-05 1.3781e-05 6.9431e-06
2−2 3.4237e-04 1.6887e-04 8.4058e-05 4.1969e-05 2.0972e-05
2−4 7.6614e-04 3.0469e-04 1.3282e-04 6.1592e-05 2.9610e-05
2−6 1.9935e-03 6.5790e-04 2.2595e-04 8.6204e-05 3.6485e-05
2−8 3.2243e-03 1.4593e-03 5.2502e-04 1.7066e-04 5.8113e-05
2−10 3.2592e-03 1.6859e-03 8.4262e-04 3.7136e-04 1.3271e-04
2−12 3.2592e-03 1.6861e-03 8.5478e-04 4.2992e-04 2.1239e-04
2−14 3.2592e-03 1.6861e-03 8.5478e-04 4.2999e-04 2.1560e-04
2−16 3.2592e-03 1.6861e-03 8.5478e-04 4.2999e-04 2.1560e-04
2−18 3.2592e-03 1.6861e-03 8.5478e-04 4.2999e-04 2.1560e-04
2−20 3.2592e-03 1.6861e-03 8.5478e-04 4.2999e-04 2.1560e-04
2−24 3.2592e-03 1.6861e-03 8.5478e-04 4.2999e-04 2.1560e-04
2−28 3.2592e-03 1.6861e-03 8.5478e-04 4.2999e-04 2.1560e-04
2−30 3.2592e-03 1.6861e-03 8.5478e-04 4.2999e-04 2.1560e-04
EN,∆t 3.2592e-03 1.6861e-03 8.5478e-04 4.2999e-04 2.1560e-04
pN,∆t 0.95083 0.98007 0.99125 0.99595 -
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Table 3: Maximum pointwise errors EN,∆t
ε and rate of convergence pN,∆t

ε for Example 2.

ε↓ N = 8 N = 32 N = 128 N = 512
M = 16 M = 32 M = 64 M = 128

2−10 1.9564e-02 7.2307e-03 1.9667e-03 2.5977e-04
1.4360 1.8784 2.9205 −

2−12 1.9564e-02 7.2307e-03 2.0043e-03 5.0486e-04
1.4360 1.8510 1.9891 −

2−14 1.9564e-02 7.2307e-03 2.0043e-03 5.1486e-04
1.4130 1.8465 1.9608 −

2−16 1.9564e-02 7.2307e-03 2.0043e-03 5.1486e-04
1.4130 1.8465 1.9608 −

2−18 1.9564e-02 7.2307e-03 2.0043e-03 5.1486e-04
1.4130 1.8465 1.9608 −

2−20 1.9564e-02 7.2307e-03 2.0043e-03 5.1486e-04
1.4130 1.8465 1.9608 −

2−22 1.9564e-02 7.2307e-03 2.0043e-03 5.1486e-04
1.4130 1.8465 1.9608 −

2−24 1.9564e-02 7.2307e-03 2.0043e-03 5.1486e-04
1.4130 1.8465 1.9608 −

2−28 1.9564e-02 7.2307e-03 2.0043e-03 5.1486e-04
1.4130 1.8465 1.9608 −

2−30 1.9564e-02 7.2307e-03 2.0043e-03 5.1486e-04
1.4130 1.8465 1.9608 −

EN,∆t 1.9564e-02 7.2307e-03 2.0043e-03 5.1486e-04
pN,∆t 1.4130 1.8465 1.9608 -

Table 4: Maximum pointwise errors EN,∆t
ε of the scheme for Example 2.

ε↓ Number of mesh intervals N = M
32 64 128 256 512

2−0 1.0749e-04 5.8531e-05 3.0614e-05 1.5660e-05 7.9207e-06
2−2 5.4983e-04 2.9405e-04 1.5246e-04 7.7670e-05 3.9206e-05
2−4 1.1863e-03 5.3173e-04 2.6476e-04 1.3288e-04 6.6635e-05
2−6 3.3040e-03 1.1073e-03 4.1432e-04 1.7826e-04 8.4960e-05
2−8 7.1097e-03 3.0887e-03 9.6542e-04 3.1847e-04 1.1859e-04
2−10 7.2307e-03 3.8516e-03 1.9512e-03 8.0308e-04 2.5301e-04
2−12 7.2307e-03 3.8523e-03 1.9892e-03 1.0105e-03 4.9936e-04
2−14 7.2307e-03 3.8523e-03 1.9892e-03 1.0107e-03 5.0944e-04
2−16 7.2307e-03 3.8523e-03 1.9892e-03 1.0107e-03 5.0944e-04
2−18 7.2307e-03 3.8523e-03 1.9892e-03 1.0107e-03 5.0944e-04
2−20 7.2307e-03 3.8523e-03 1.9892e-03 1.0107e-03 5.0944e-04
2−24 7.2307e-03 3.8523e-03 1.9892e-03 1.0107e-03 5.0944e-04
2−28 7.2307e-03 3.8523e-03 1.9892e-03 1.0107e-03 5.0944e-04
2−30 7.2307e-03 3.8523e-03 1.9892e-03 1.0107e-03 5.0944e-04
EN,∆t 7.2307e-03 3.8523e-03 1.9892e-03 1.0107e-03 5.0944e-04
pN,∆t 0.90842 0.95353 0.97683 0.98837 -
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Table 5: Comparison of uniform error (EN,∆t) and uniform rate of convergence (pN,∆t) for Example 1.

Methods N = 32 N = 64 N = 128 N = 256
M = 40 M = 80 M = 160 M = 320

Proposed method EN,∆t 3.2592e-03 1.6861e-03 8.5478e-04 4.2999e-04
pN,∆t 0.95083 0.98007 0.99125 -

Method in, [16] EN,∆t 7.8114e-03 4.1163e-03 2.1158e-03 1.0729e-03
pN,∆t 0.9242 0.9601 0.9797 -

Method in, [4] EN,∆t 9.2390e-3 5.4553e-3 3.1384e-3 1.7623e-3
pN,∆t 0.7601 0.7976 0.8325 0.8598

Method in, [7] EN,∆t 9.9504e-03 5.8541e-03 3.3439e-03 1.8650e-03
pN,∆t 0.7653 0.8079 0.8424 -

N = M = 32 N = 64 N = 128 N = 256
Proposed method EN,∆t 3.1183e-03 1.6167e-03 8.2040e-04 4.1290e-04

pN,∆t 0.94771 0.97865 0.99054 -
Method in, [9] EN,∆t 1.72e-02 9.00e-03 4.58E-03 2.30e-03

pN,∆t 0.9344 0.9746 0.9937 -

Table 6: Comparison of uniform error (EN,∆t) and uniform rate of convergence (pN,∆t) for Example 2.

Methods N = M = 32 N = 64 N = 128 N = 256
Proposed method EN,∆t 7.2307e-03 3.8523e-03 1.9892e-03 1.0107e-03

pN,∆t 0.90842 0.95353 0.97683 -
Method in, [9] EN,∆t 1.84e-02 9.38e-03 4.67e-03 2.31e-03

pN,∆t 0.9720 1.0062 1.0155 -
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Figure 1: Numerical solution for Example 1 for different values of ε and T (a) ε = 1,(b) ε = 2−16.
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Figure 2: Example 1 on left and Example 2 on right, Log-Log plot between N and maximum absolute
error.

the numerical approach developed in this paper. In Table 5 and Table 6 we are comparing the maximum
absolute errors and rate of convergence obtained by the proposed method for the problems in Example 1
and Example 2 respectively. The two tables (Table 5 and Table 6) also clearly indicate that the errors of
exponentially fitted finite difference scheme presented in this paper are much smaller than those obtained
using a boundary-layer resolving method. From these tables we can confirm the improved accuracy of
our proposed numerical method. It should be noted that the MATLAB R2013A program was used to
execute the computations connected to the illustrations of each Example in this work.

6 Conclusion

An efficient numerical method based on the exponentially fitted method has been proposed for solving
a class of one-dimensional singularly perturbed large time delay parabolic partial differential equations of
convection-diffusion type that arise in the automatically controlled furnace model. We have proved that
the method provides second-order accurate ε-uniform convergent in both time and space. The approach
can also be used to solve equations with delays, which might be constant, time-dependent, or random. As
ε → 0, the suggested method may be applied to singularly perturbed parabolic reaction-diffusion prob-
lems exhibit boundary layers in the neighborhood of both along x = 0 and x = 1. However, the solutions
in this situation have a different type of layer than the layers discussed in this article. The performance of
the proposed approach is investigated by evaluating with most of the current methods. From the numeri-
cal experiments, it is observed that, the more efficiency and high accuracy of this method. An interesting
feature of this method is that, it is not necessary to impose any restriction on mesh formation. On the
basis of the numerical results of the two examples, it is concluded that the present method offers signif-
icant advantage for the singularly perturbed delay parabolic partial differential equations of convection
diffusion type with large time lag.
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