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Abstract. In this paper, numerical solution of the singularly perturbed differential equations
with mixed parameters are considered. The stability and parameter uniform convergence of the
proposed method are proved. To validate the applicability of the scheme, two model problems
are considered for numerical experimentation and solved for different values of the perturbation
parameter, ε and mesh size, h. The numerical results are tabulated and it is observed that
the present method is more accurate and ε-uniformly convergent for h ≥ ε, where the classical
numerical methods fails to give good result.
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1 Introduction

The solution of singular perturbation problems possesses boundary and/or interior layer(s). As a
result, many of classical numerical methods have severe restrictions on the step-size to preserve
the stability properties when the perturbation parameter(s) is(are) very small. To avoid the
restrictions, there are two approaches to design method that gives small truncation errors inside
these layers. The first approach is the class of fitted operator methods whereas the second one is
the fitted mesh methods. However, both approaches have their own merits and demerits. Fitted
operator methods work well on a uniform mesh but are difficult to extend for higher dimensional
problems except the fitted operator methods of non-standard type that are under consideration
in this work. Fitted mesh methods are easy to extend for higher dimensional and nonlinear
problems but require the priori knowledge of the location and width of the layer(s).
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Singularly perturbed delay differential equation is a differential equation in which the highest
order derivative is multiplied by a small perturbation parameter and consist of at least one term
involving delay argument. Such types of differential equations play very important role in the
mathematical models of science and engineering such as the human pupil light reflex with mixed
delay type [11], variational problems in control theory with small state problem [9], models of
HIV infection [4], and signal transition [6].

Finding the solution of singularly perturbed delay differential equations, whose applications
were mentioned above is a challenging task. In response to these, in recent years, there has been a
growing interest in numerical treatment of singularly perturbed delay differential equations. The
authors of [7,16,17] have developed various numerical schemes on uniform meshes for singularly
perturbed second order differential equations having small delay on the convection term. The
authors of [3, 5, 8, 10,18] have presented second order differential equations with large delay.

In this work, motivated by the works of [8,10,18], we develop a non-standard finite difference
scheme on uniform mesh for the numerical solution of the problem under consideration. The
simplicity in the construction and possibility of their extensions allowed researchers to apply
NSFD (nonstandard finite difference) schemes to solve several complex differential equations
that arise in the interface of engineering and natural sciences. Historically, for the first time,
Mickens set following five rules [13] for the construction of discrete models that have the capa-
bility to replicate the properties of the exact solution.
Rule 1: The orders of the discrete derivatives must be exactly equal to the orders of the corre-
sponding derivatives of the differential equations.
Rule 2: Denominator functions for the discrete derivatives must, in general, be expressed in
terms of more complicated functions of the step sizes than those conventionally used.
Rule 3: Nonlinear terms should be approximated in a nonlocal way.
Rule 4: Special solutions of differential equations should also be special discrete solutions of the
finite difference models.
Rule 5: The finite-difference equations should not have solutions that do not correspond exactly
to solutions of the differential equations.

Following to this, Anguelov and Lubuma [1] reworded these rules and presented them as
a definition for the NSFD schemes. This definition was further generalized in Lubuma and
Patidar [12]. Attracted by a large readership of his earlier books on the topic published in 1994
and 2000 [13,14], Mickens came up with another book [15] that he edited and was published in
2005. Many relevant topics ranging from natural sciences to biomedical and engineering domains
were covered in this book.

As far as the researchers’ knowledge is concerned numerical solution of singularly perturbed
boundary value problems containing both large and small delay is new and it is not well developed
so far.

Throughout our analysis, C is a generic positive constant that is independent of the param-
eter ε and the number of mesh points is 2N . We assume that Ω̄ = [0, 2], Ω = (0, 2), Ω1 = (0, 1),

Ω2 = (1, 2), Ω∗ = Ω1 ∪Ω2, Ω
2N

is denoted by {0, 1, 2, . . . , 2N}, Ω2N
1 is denoted by {1, 2, . . . , N}

and Ω2N
2 is denoted by {N+1, N+2, . . . , 2N−1}. K1 and K2 are the linear operators associated

to the domain Ω1 and Ω2, respectively.
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2 Definition of the problem

Consider the following singularly perturbed problem

Ly(x) = −εy′′(x) + a(x)y′(x) + b(x)y(x) + c(x)y(x− 1) + d(x)y′(x− δ) = f(x), x ∈ Ω, (1)

y(x) = φ(x), x ∈ [−1, 0], y(2) = l, l ∈ R. (2)

where δ is small, that is δ = O(ε), 0 < ε � 1, φ(x) is sufficiently smooth on [−1, 0]. For all
x ∈ Ω, it is assumed that the sufficient smooth functions a(x), b(x), c(x), d(x) and f(x) satisfy

a(x) ≥ a1 ≥ a > 0, b(x) > b ≥ 0, c1 ≤ c(x) ≤ c < 0, d(x) ≥ d ≥ 0,

2(a+ d) + 5b+ 5c1 ≥ η > 0, a(a1 − a) + 2c1 > 0.

The above assumptions ensure that y ∈ X = C0(Ω̄) ∩ C1(Ω) ∩ C2(Ω1 ∪ Ω2). The BVP (1)-(2)
exhibits strong boundary layer at x = 2 and interior layer at x = 1. By expanding y′(x − δ)
around x using the Taylor’s expansion and discarding higher order terms, the above problem
can be approximated by

Ky(x) = −cε,δ(x)y′′(x) + p(x)y′(x) + b(x)y(x) + c(x)y(x− 1) = f(x), (3)

where cε,δ(x) = ε+ δd(x) and p(x) = a(x) + d(x) with

y(x) = φ(x), x ∈ [−1, 0], y(2) = l. (4)

For small δ, Eqs. (1) and (3) are asymptotically equivalent, because the difference between
the two equations is of order O(δ2). Now we assume again 0 < cε,δ(x) = ε + δd(x) = cε and
p(x) = a(x) + d(x) ≥ p > 0.

As we observed from Eqs. (3) and (4), the values of y(x− 1) are known for the domain Ω1

and unknown for the domain Ω2 due to the large delay at x = 1. So, it impossible to treat the
problem by the same approach throughout the domain Ω̄. Thus, we have to treat the problem
at Ω1 and Ω2 separately.

Eqs. (3)-(4) are equivalent to
Ky(x) = R(x), (5)

where

Ky(x) =

{
K1y(x) = −cεy′′(x) + p(x)y′(x) + b(x)y(x), x ∈ Ω1,
K2y(x) = −cεy′′(x) + p(x)y′(x) + b(x)y(x) + c(x)y(x− 1), x ∈ Ω2.

(6)

R(x) =

{
f(x)− c(x)φ(x− 1), x ∈ Ω1,
f(x), x ∈ Ω2,

(7)

with boundary conditions 
y(x) = φ(x), x ∈ [−1, 0],
y(1−) = y(1+), y′(1−) = y′(1+),
y(2) = l.

(8)

where y(1−) and y(1+) denote the left and right limits of y at x = 1, respectively.
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3 Properties of continuous solution

Lemma 1. (Maximum Principle) Let ψ(x) be any function in X such that ψ(0) ≥ 0, ψ(2) ≥ 0,
K1ψ(x) ≥ 0, ∀x ∈ Ω1, K2ψ(x) ≥ 0, ∀x ∈ Ω2 and ψ′(1+)−ψ′(1−) = [ψ′](1) ≤ 0. Then ψ(x) ≥ 0,
∀x ∈ Ω̄.

Proof. Define the test function

s(x) =

{
1
8 + x

2 , x ∈ [0, 1],
3
8 + x

4 , x ∈ [1, 2].
(9)

Note that s(x) > 0, ∀x ∈ Ω̄, KNs(x) > 0, ∀x ∈ Ω1 ∪ Ω2, s(0) > 0, s(2) > 0 and [s′](1) < 0.

Let µ = max{−ψ(x)
s(x) : x ∈ Ω̄}. Then there exists x0 ∈ Ω̄ such that ψ(x0) + µs(x0) = 0 and

ψ(x) + µs(x) ≥ 0, ∀x ∈ Ω̄. Therefore, the function (ψ + µs) attains its minimum at x = x0.
Suppose the theorem does not hold true, then µ > 0.
Case (i): x0 = 0,

0 < (ψ + µs)(0) = ψ(0) + µs(0) = 0,

which is a contradiction.
Case (ii): x0 ∈ Ω1,

0 < K(ψ + µs)(x0) = −cε(ψ + µs)′′(x0) + p(x0)(ψ + µs)′(x0) + b(x0)(ψ + µs)(x0) ≤ 0,

which is a contradiction.
Case (iii): x0 = 1,

0 ≤ [(ψ + µs)′](1) = [ψ′](1) + µ[s′](1) < 0,

it is a contradiction.
Case (iv): x0 ∈ Ω2,

0 < K(ψ + µs)(x0)

= −cε(ψ + µs)′′(x0) + p(x0)(ψ + µs)′(x0) + b(x0)(ψ + µs)(x0)

+c(x0)(ψ + µs)(x0 − 1) ≤ 0,

Case (iv): x0 = 2,

0 < (ψ + µs)(2) = (ψ + µs)(2) ≤ 0,

which is a contradiction. Hence, the proof of the theorem is completed.

Lemma 2. (Stability Result) The solution y(x) of the problem (3)-(4), satisfies the bound

|y(x)| ≤ C max{
∣∣y(0)

∣∣, ∣∣y(2)|, sup
x∈Ω∗

∣∣Ky(x)
∣∣}, x ∈ Ω.

Proof. This theorem can be proved by using Lemma 1 and the barrier functions θ±(x) =
CMs(x) ± y(x), x ∈ Ω, where M = max{

∣∣y(0)
∣∣, ∣∣Ky(2)

∣∣, supx∈Ω∗
∣∣Ky(x)

∣∣} and s(x) is the
test function as in Lemma 1.
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The uniqueness of the solution is implied by this minimum principle (Lemma 1). Its existence
follows trivially (as for linear problems, the uniqueness of the solution implies its existence). This
principle is now applied to prove that the solution of Eqs. (3)–(4) is bounded. The following
lemma shows the bound for the derivatives of the solution.

Lemma 3. Let y(x) be the solution of Eqs. (3)-(4). Then, we have the following bounds

|y(k)(x)|Ω∗ ≤ Cε−k, for k = 1, 2, 3.

Proof. To bound y′(x) on the interval Ω1, we consider

K1y(x) = −cεy′′(x) + a(x)y′(x) + b(x)y(x) = f(x).

By integrating the above equation on both sides, we get

−cε
(
y′(x)− y′(0)

)
= −[a(x)y(x)− a(0)y(0)] +

∫ x

0
a′(t)y(t)dt−

∫ x

0
b(t)y(t)dt

+

∫ x

0
[f(t)− c(t)φ(t− 1)]dt.

Therefore,

cεy
′(0) = cεy

′(x)− [a(x)y(x)− a(0)y(0)] +

∫ x

0
a′(t)y(t)dt−

∫ x

0
b(t)y(t)dt

+

∫ x

0
[f(t)− c(t)φ(t− 1)]dt.

Then by the mean value theorem, there exits z ∈ (0, cε) such that

|cεy′(z)| ≤ C(|y(x)|, |f(x)|, |φ(x)|[−1,0]) and |cεy′(0)| ≤ C(|y(x)|+ |f(x)|+ |φ(x)|).

Hence,

|cεy′(x)| ≤ C max(|y(x)|, |f(x)|, |φ(x)|).

By a similar argument we can bound y′(x) on Ω2, as |cεy′(x)| ≤ C. From Eqs. (6) and (7), we
have

|y(k)(x)|Ω∗ ≤ Cc−kε , k = 2, 3, 4.

Hence, the proof is completed.

Lemma 4. The bound for derivative of the solution y(x) of the problem (3)-(4) when x ∈ Ω1 =
(0, 1) is given by

|y(k)(x)| ≤ C
(

1 + c−kε exp

(
−p(1− xj)

cε

))
, for k = 0 ≤ k ≤ 4, j = 1, 2, 3, . . . , N − 1.

Proof. For the proof, we refer to [2].
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4 Formulation of the method

The theoretical basis of non-standard discrete numerical method is based on the development
of exact finite difference method. Mickens [15] presented techniques and rules for developing
non-standard finite difference methods for different problem types. In Mickens’ rules, to de-
velop a discrete scheme, denominator function for the discrete derivatives must be expressed in
terms of more complicated functions of step sizes than those used in the standard procedures.
These complicated functions constitute a general property of the schemes, which is useful while
designing reliable schemes for such problems.

For the problem of the form (3)–(4), in order to construct exact finite difference scheme we
follow the procedures used in [2]. Let us consider the following singularly perturbed differential
equation of the form

− cεy′′(x) + p(x)y′(x) + b(x)y(x) = f(x). (10)

The constant coefficient sub-equations can be given as

−cεy′′(x) + py′(x) + by(x) = 0, (11)

−cεy′′(x) + py′(x) = 0, (12)

where p(x) ≥ p and b(x) ≥ b. Thus, Eq. (11) has two independent solutions namely exp(λ1x)
and exp(λ2x) with

λ1,2 =
−p±

√
p2 − 4cεb

2cε
. (13)

We discretize the domain [0, 1] using uniform mesh length ∆x = h such that, ΩN
1 = {xi =

x0 + ih, 1, 2, . . . , N, x0 = 0, xN = 1, h = 1
N }, where N is the number of mesh points. We denote

the approximate solution of y(x) at x’s by Yi. Now our objective is to calculate a difference
equation which has the same general solution as Eq. (11) at the grid point xi given by

Yi = A1 exp(λ1xi) +A2 exp(λ2xi).

Using the procedures used in [2], we have

det

 Yi−1 exp(λ1xi−1) exp(λ2xi−1)
Yi exp(λ1xi)) exp(λ2xi)
Yi+1 exp(λ1xi+1) exp(λ2xi+1)

 = 0. (14)

By simplifying Eq. (14), we obtain that

− exp(
ph

2cε
)Yi−1 + 2 cosh(

h
√
p2 + 4cε,δ(x)b

2cε
)Yi − exp(

−ph
2cε

)Yi+1 = 0, (15)

is an exact difference scheme for Eq. (11). After doing the arithmetic manipulation and rear-
rangement on Eq. (15) we obtain

cε
Yi−1 − 2Yi + Yi+1

Ψ2
+ p

Yi+1 − Yi
h

= 0, (16)
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where

Ψ2 =
hcε
p

(
exp

(
hp

cε

)
− 1

)
.

Adopting this function for the variable coefficient problem, we write it as

Ψ2
i =

hcε
pi

(
exp

(
hpi
cε

)
− 1

)
, (17)

where Ψ2
i is the function of cε, pi.

Assume that Ω̄2N denote partition of [0,2] in to 2N subintervals such that

0 = x0 < x1 < . . . < xN = 1, and 1 < xN+1 < xN+2 < . . . < x2N = 2

with xi = ih, h = 2
2N = 1

N , i = 0, 1, 2, . . . , 2N .
Case 1: Consider Eq. (5) on the domain Ω1 = (0, 1) which is given by{

−cεy′′(x) + p(x)y′(x) + b(x)y(x) = f(x)− c(x)φ(x− 1),
y0 = y(0) = φ(0), y(1) = θ.

(18)

Undertaking the notation yi = y(xi) and using the nonstandard finite difference methodology
of [15], for right layer in the domain Ω1 the scheme to solve Eq. (18) is given by

− cε
(
yi+1 − 2yi + yi−1

ψ2
i

)
+ pi

(
yi − yi−1

h

)
+ biyi + τ1 = fi − ciφ(xi − 1), (19)

where

Ψ2
i =

hcε
pi

(
exp

(
hpi
cε

)
− 1

)
= h2 +O

(
h4

ε

)
,

with the local truncation term τ1 = hpi2 y
′′
i + O(h2) = O(h). Eq. (19) can be written as three

term recurrence relation as

Eiyi−1 + Fiyi +Giyi+1 = Hi, i = 1, 2, . . . , N − 1, (20)

where Ei = −cε
ψ2
i
− pi

h , Fi = 2cε
ψ2
i

+ pi
h + bi, Gi = −cε

ψ2
i

and Hi = fi − ciφ(xi − 1).

Case 2: Consider Eq. (5) on the domain Ω2 = (1, 2), for right layer in the domain Ω2 using the
nonstandard finite difference method which is given by

−cε
(
yi+1 − 2yi + yi−1

ψ2
i

)
+ pi

(
yi − yi−1

h

)
+ biyi + τ1 = fi − ciφ(xi − 1).

Similarly, this equation can be written as

ciyj + Eiyi−1 + Fiyi +Giyi+1 = Hi, i = N + 1, N + 2, . . . , 2N − 1, (21)

where yj = y(xi − 1), j = 1, 2, . . . , N , Ei = −cε
ψ2
i
− pi

h , Fi = 2cε
ψ2
i

+ pi
h + bi, Gi = −cε

ψ2
i

and

Hi = fi − ciφ(xi − 1). Therefore, on the whole domain Ω = [0, 2], the basic schemes to solve
Eqs. (1)-(2) are the schemes given in Eq. (20) and Eq. (21) together with the local truncation
error of τ1 .
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5 Uniform convergence analysis

The discrete scheme corresponding to the original Eqs. (3)-(4) is as follows:

KN
1 Yi = fi − ciφi−N , i = 1, 2, 3, . . . , N − 1,

KN
2 Yi = fi, i = N + 1, N + 2, . . . , 2N − 1

subject to the boundary conditions

Yi = φi, i = −N,−N + 1, . . . , 0,

Y2N = l,

where {
KN

1 yi = −cεδ2Yi + p(xi)D
−Yi + b(xi)Yi,

KN
2 yi = −cεδ2Yi + p(xi)D

−Yi + b(xi)Yi + c(xi)Yi−N .

Let us define the forward, backward and second order finite difference operators as
D+Yi = Yi+1−Yi

h ,

D−Yi = Yi−Yi−1

h ,

δ2Yi = D+D−Yi = D+Yi−D−Yi
h .

Theorem 1. Let the coefficients functions a(x),b(x) and the source function R(x) in Eqs. (6)-
(7) of the domain Ω1 be sufficiently smooth, so that y(x) ∈ C4[0, 1]. Then, the discrete solution
Yi satisfies

|KN ((y(xi)− Yi)| ≤ Ch

(
1 + sup

xi∈(0,1)

(
exp(−p(l−xi)ε )

c3
ε

))
.

Proof. We consider the truncation error discretization as

|KN ((y(xi)− Yi)| =|KNyi −KNYi|

≤Ccε|y′′i −D+D−Yi|+ Ccε|(
h2

Ψ2
i

− 1)D+D−Yi|+ Ch|y′′i |

≤Ccεh2|y(4)
i |+Ch|y

′′
i |+ Ch|y′′i |

≤Ccεh2|y(4)
i |+ Ch|y′′i |.

The bound cε| h
2

Ψ2−1| ≤ Ch used in above expression is based on the behavior of the denominator
function Ψ2 in non-standard finite difference. To illustrate the bound given there, let us define

σ =:
aih

cε
, σ ∈ (0,∞). Then,

cε|
h2

Ψ2 − 1
| = aih|

1

exp(σ)− 1
− 1

σ
| =: aihQ(σ).

By simplifying and writing explicitly we obtain

Q(σ) =
exp(σ)− σ − 1

σ(exp(σ)− 1)
,



Numerical solution of SPDDE with mixed parameters 699

and we obtain the limit is bounded as

lim
σ−→0

Q(σ) =
1

2
, lim

σ−→∞
Q(σ) = 0.

Hence, for all σ ∈ (0,∞) we have Q(σ) 6 C. So, the error estimation in the discretization is
bounded as

|KN ((y(xi)− Yi)| 6 Ccεh
2|y(4)

i |+ Ch|y′′i |. (22)

From Eq. (22) and boundedness of derivatives of solution in Lemma 4 , we obtain

|KN (y(xi)− Yi)| ≤ Ccεh2

∣∣∣∣ (1 + c−4
ε exp

(
−p(1− xi)

cε

)) ∣∣∣∣
+ Ch

∣∣∣∣ (1 + c−2
ε exp

(
−p(1− xi)

cε

)) ∣∣∣∣
≤ Ch2

∣∣∣∣ (1 + c−3
ε exp

(
−p(1− xi)

cε

)) ∣∣∣∣
+ Ch

∣∣∣∣ (1 + c−2
ε exp

(
−p(1− xi)

cε

)) ∣∣∣∣
≤ Ch

(
1 + sup

xi∈(0,1)

(
exp(−p(1−xi)cε

)

c3
ε

))
,

since (cε)
−4 ≥ (cε)

−3.

By similar argument for Ω2, we get

|KN ((y(xi)− Yi)| ≤ Ch

(
1 + sup

xi∈(0,1)

(
exp(−p(l−xi)cε

)

c3
ε

))
.

Most of the time during analysis, one encounters with exponential terms involving divided by the
power function in cε which are always the main cause of worry. For their careful consideration
while proving the ε-uniform convergence, we prove for the right layer case as follows.

Lemma 5. For a fixed mesh and for cε → 0, it holds

lim
cε→0

max
1≤i≤N−1

(
exp(−p(l−xi)cε

)

cmε

)
= 0, m = 1, 2, 3, . . . , (23)

where xi = ih, h = 1
N , i = 1, 2, . . . , N − 1.

Proof. Consider the partition [0, 1] := {0 = x0 < x1 < . . . . < xN−1 < xN = 1} for the interior
grid points. We have

max
1≤i≤N−1

exp

(
−pxi
cε

)
cmε

≤
exp

(
−px1

cε

)
cmε

=

exp

(
−ph
cε

)
cmε

,
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and

max
1≤i≤N−1

exp

(
−p(1− xi)

cε

)
cmε

≤
exp

(
−p(1− xN−1)

cε

)
cmε

=
exp(

(−αh
cε

)

cmε
,

as x1 = 1− xN−1 = h. The repeated application of L’Hospital’s rule gives

lim
cε−→0

exp

(
−ch
cε

)
cmε

= lim
σ= 1

cε
−→∞

σm

exp(chσ)
= lim

σ= 1
cε
−→∞

m!

(ch)m exp(chσ)
= 0.

This complete the proof.

Theorem 2. Under the hypothesis of boundness of discrete solution (i.e., it satisfies the discrete
minimum principle), Lemma 5 and Theorem 1, the discrete solution satisfies the following bound:

sup
0≤ε≤1

max
i
|y(xi)− Yi|≤ CN−1. (24)

Proof. Results from boundedness of the solution, Lemma 5 and Theorem 1 give the required
estimations.

Consistence of the scheme can be described as follows. Local truncation errors refer to the
differences between the original differential equation and its finite difference approximation at a
mesh points. Finite difference scheme is called consistent if the limit of truncation error (Ti(h))
is equal to zero as the mesh size h goes to zero. Hence, the proposed method in Eq.(20) with
local truncation error in Eq. (24) satisfies the definition of consistency as

lim
h→0

Ti(h) = lim
h→0

Ch = 0. (25)

Thus, the proposed scheme is consistent.

6 Numerical examples and results

In this section, we consider the following two examples to illustrate the numerical method
discussed above:

Example 1. Consider the singularly perturbed boundary value problem

−εy′′(x) + 10y′(x)− y(x− 1) + y′(x− ε) = x, x ∈ (0, 1) ∪ (1, 2),

subject to the boundary conditions

y(x) = 1, x ∈ [−1, 0], y(2) = 2.

Example 2. Consider the singularly perturbed boundary value problem

−εy′′(x) + (x+ 10)y′(x)− y(x− 1) = x, x ∈ (0, 1) ∪ (1, 2),

subject to the boundary conditions

y(x) = x, x ∈ [−1, 0], y(2) = 2.
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The considered problems contain large delay parameter on the reaction term and small delay
parameter on the convection term. The solutions of the problems exhibit interior layer due to
the delay parameter and strong right boundary layer due to the small perturbation parameter ε
(see Fig. 1). Fig. 2 shows, as the number of mesh points increases (as the mesh size decreases),
the absolute error deceases which shows the convergence of the scheme and Fig. 3 and Table 1
show, the ε-uniform convergence of our scheme for h ≥ ε where the classical numerical method
fails. The exact solutions of the test problems are not known. Therefore, we use the double
mesh principle to estimate the error and compute the experiment rate of convergence to the
computed solution. For this we put

ENε = max
0≤i≤2N

|Y N
i − Y 2N

2i | (26)

where Y N
i and Y 2N

2i are the ith and 2ith components of the numerical solutions on meshes of N
and 2N respectively. We compute the uniform error and the rate of convergence as

EN = max
ε
ENε , and RN = log2

(
EN

E2N

)
(27)

The numerical results are presented for the values of the perturbation parameter ε ∈ { 10−4, 10−8,
. . . , 10−20}.

Table 1: Maximum absolute errors, rate of convergence and CPU (in seconds) for Example 1
for different values of N .

ε N = 16 N = 32 N = 64 N = 128 N = 256

10−4 3.3848e-04 1.7340e-04 8.7738e-05 4.4129e-05 2.2130e-05
10−8 3.3847e-04 1.7340e-04 8.7738e-05 4.4129e-05 2.2130e-05
10−12 3.3847e-04 1.7340e-04 8.7738e-05 4.4129e-05 2.2130e-05
10−16 3.3847e-04 1.7340e-04 8.7738e-05 4.4129e-05 2.2130e-05
10−20 3.3847e-04 1.7340e-04 8.7738e-05 4.4129e-05 2.2130e-05

EN 3.3847e-04 1.7340e-04 8.7738e-05 4.4129e-05 2.2130e-05
RN 0.9828 0.9915 0.9957 0.9979

CPU 0.3848 2.884361 23.718605 120.343685 994.0064301

7 Discussion and conclusion

This study has introduced non-standard fitted operator finite difference numerical method for
solving singularly perturbed differential equations having both large and small delay. The be-
havior of the continuous solution of the problem has been studied and shown that it satisfies the
continuous stability estimate and the derivatives of the solution are also bounded. The numeri-
cal scheme has been developed on uniform mesh using non-standard finite difference method in
the given differential equation. The stability of the developed numerical method has been estab-
lished and its uniform convergence has been proved. To validate the applicability of the method,
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Table 2: Maximum absolute errors, rate of convergence and CPU(in second) for Example 2 for
different values of N .

ε N = 16 N = 32 N = 64 N = 128 N = 256

10−4 7.4131e-04 3.8075e-04 1.9293e-04 9.7108e-05 4.8727e-05
10−8 7.4131e-04 3.8075e-04 1.9293e-04 9.7108e-05 4.8727e-05
10−12 7.4131e-04 3.8075e-04 1.9293e-04 9.7108e-05 4.8727e-05
10−16 7.4131e-04 3.8075e-04 1.9293e-04 9.7108e-05 4.8727e-05
10−20 7.4131e-04 3.8075e-04 1.9293e-04 9.7108e-05 4.8727e-05

EN 7.4131e-04 3.8075e-04 1.9293e-04 9.7108e-05 4.8727e-05
RN 0.9612 0.9808 0.9904 0.9949

CPU 0.321228 2.893108 23.049239 117.15339 898.006433

Table 3: Comparision of maximum absolute errors and rate of convergence for Example 2 for
different values of N .

ε N = 32 N = 64 N = 128 N = 256

Present method 3.8075e-04 1.9293e-04 9.7108e-05 4.8727e-05
RN 0.9808 0.9904 0.9949

Method in [3] 2.7660e-03 1.4020e-03 7.0560e-04 3.5400e-04
RN 0.9806 0.9904 0.9952
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Figure 1: The behavior of the numerical solution for Example 1 and Example 2 at ε = 10−12

and N = 32, respectively.

two model problems have been considered for the numerical experimentation for different values
of the perturbation parameter and mesh points. The numerical results have been tabulated in
terms of maximum absolute errors, numerical rate of convergence and uniform errors and CPU



Numerical solution of SPDDE with mixed parameters 703

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

E
rr

o
r

10-4

N=32
N=64
N=128

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

1

2

3

x 10
−4

x

E
rr

or

 

 

N=32
N=64
N=128

Figure 2: Point-wise absolute error of Example 1 and Example 2 at ε = 10−12 for different values
N , respectively.
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Figure 3: ε-uniform convergence with NSFDM in log-log scale for Example 1 and Example 2,
respectively.

(in seconds) (see Table 1–Table 2) and compared with the results of the previously developed
numerical methods existing in the literature (see Table 3). Further, behavior of the numerical
solution (Fig 1), point-wise absolute errors (Fig 2) and the ε-uniform convergence of the method
have been shown by the log-log plot (Fig 3). The method is shown to be ε-uniformly conver-
gent with order of convergence O(h). The proposed method gives more accurate, stable and
ε-uniform numerical result.
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