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Abstract. Pre-exposure prophylaxis (PrEP) has become a promising strategy used by unin-
fected individuals for the HIV prevention. The risk of infection with HIV after exposure to the
virus can be understood through a stochastic framework. In this research we present a stochastic
model for HIV/AIDS epidemic with the use of prophylaxis and we show that the model with
random perturbation has a unique global positive solution. For a special case, we introduce an
analogue, Rσ, of the basic reproduction number. This invariant features in a theorem on al-
most sure exponential stability. Our results show that the disease goes extinct exponentially and
almost surely wheneverRσ stays below unity. Simulations serve to illustrate various phenomena.
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1 Introduction

Truvada pre-exposure prophylaxis (PrEP) is an antiretroviral (ARV) pill that combines two ARV
drugs, tenofovir disoproxil fumarate (TDF) and emtricitabine (FTC), and has well-established
efficacy in reducing the risk of contracting HIV if taken daily [12]. This pre-exposure prophylaxis
(PrEP) is used as an antiretroviral medication by uninfected people to prevent them from
acquisition of HIV1. However, PrEP is different from post-exposure prophylaxis (PEP) which is
currently being used as a way to prevent HIV infection after a recent possible exposure to HIV
and PEP consists of the in-take of antiretroviral drugs for, usually, 28 days2. PrEP is considered
to be one of the five pillars by the Joint United Nations Programme on HIV and AIDS (UNAIDS)
to drastically reduce HIV transmission. In general, AIDS related death cases have been reduced
due to extensive availability of ARV treatment and the use of PrEP. The level of efficacy varied
according to differences in adherence within and across the study populations, with Men Who
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Have Sex With Men (MSM) showing higher levels of efficacy than found in the women-only
studies [6]. The World Health Organization (WHO) recommended that PrEP should be offered
as an additional prevention option for people at substantial risk of HIV infection3. In South
Africa, sex workers constitute an undeniable risk of HIV infection in everyday reality. According
to the South African (SA) Human Sciences Research Council’s report women aged 15-25 years
are most at risk of contracting HIV [21]. The report informs the Higher Education, the National
Department of Health and other training programmes involved with HIV/AIDS on the necessity
of rolling out Truvada across universities and colleges because students are also considered as a
high-risk section. The roll-out of Truvada aims to offer a better protection against HIV especially
to population at high risk of infection if there is a sufficient adherence. In South Africa PrEP
was first introduced into sites for female sex workers (FSWs) in June 2016, then into sites for
MSM in April 2017, into university sites for young students in October 2017, and most recently
in May 2018 into general sites for young people4.

Epidemics are inevitably affected by environmental random noise, which is an important
factor to be taken into account by mathematical models, providing an additional degree of
realism in comparison to their deterministic counterparts [20]. A considerable amount of research
has been found in the literature which describes the effects of PrEP or PEP on the population
dynamics of HIV in the form of modeling with ordinary differential equations or stochastic
differential equations. Some of these topics are discussed in [2, 4, 5, 18]. Djomegni et al. [4]
propose a mathematical model to understand the transmission dynamics of HIV/AIDS in an
environment. Their investigation reveals that when there is both high awareness and high efficacy
of PrEP (pre-exposure prophylaxis) use, increasing the efficacy of PrEP use, drastically decreases
the basic reproduction number. Djordjevic et al. [5] propose a stochastic epidemic model and
prove conditions under which extinction or persistence in mean would hold. Conway et al. [2]
present simple theoretical models of HIV dynamics, and apply these models to understand how
drug prophylaxis can act to reduce the risk of infection. In this regard, the authors work with
stochastic models based on continuous-time branching processes to compute the risk of infection
under different scenarios. The paper by Pinto et al. [18] proposes a fractional order model to
study the efficacy of the Post-Exposure Prophylaxis (PEP) in human immunodeficiency virus
(HIV) within-host dynamics, in the presence of the HIV latent reservoir. In their research the
authors focus on the dosage and dosage intervals of antiretroviral therapy (ART) during PEP
and in the role of the latent reservoir in HIV infected patients. The papers [3, 7, 19] show that
stochastic perturbations can further improve the stability of the disease-free equilibrium for the
specific models.

The current paper demonstrates and quantifies how the use of PrEP leads to reducing new
infections, and even in the presence of minor stochastic perturbations. The rest of the paper
is set up as follows. In Section 2, we describe the model as a system of stochastic differential
equations and prove positivity. In Section 3 we present a theorem on almost sure exponential
stability for the case of disease-free equilibrium. We provide numerical simulations to in Section
4. In Section 5 we present some concluding remarks.

3World Health Organisation. Guideline on When to Start Antiretroviral Therapy and on Pre-Exposure Pro-
phylaxis for HIV. Geneva: World Health Organization, 2015.

4Report from the 22nd International AIDS Conference (AIDS 2018), Amsterdam, July 2018.
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2 Model description

2.1 Overview of the underlying deterministic model

Our stochastic model is based on the deterministic model in [13]. We first divide the force of
infection of the model in [13] by the total population N and we introduce a function Γ which
denotes the drug efficacy. The refined underlying deterministic model has been constructed
by considering the appropriate in-flow and out-flow rates of each compartment together with
parameters listed in the diagram below:

Figure 1: Flow diagram of HIV/AIDS model with PrEP

dS

dt
= µK − c(β1I1 + β2I2)S − (µ+ Γφ)S + θE,

dI1

dt
= c(β1I1 + β2I2)S − (µ+ k1)I1 + αI2,

dI2

dt
= k1I1 − (µ+ k2 + α)I2,

dA

dt
= k2I2 − (µ+ δ)A,

dE

dt
= ΓφS − (µ+ θ)E, (1)

with S(0) = S0 > 0, I1(0) = I1,0 > 0, I2(0) = I2,0 > 0, A(0) = A0 > 0, E(0) = E0 > 0.
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For the mathematical formulation of the model, we use the following notations:

µ : Birth and mortality rates by natural causes,
K : Size of the total population,
c : An individual’s average number of sexual contacts with others per unit time,
β1 : Probability of disease transmission in the asymptomatic phase,
β2 : Probability of disease transmission in the symptomatic phase,
φ : Proportion of susceptible individuals under PrEP,
θ : Proportion of susceptible individuals who default PrEP,
k1 : Progression rate from I1 to I2,
k2 : Progression rate from the symptomatic phase I2 to A,
α : Rate of transfer from I2 to I1 due to ARV treatment,
δ : Disease induced mortality rate,
Γ : The drug efficacy,

The basic reproduction number of the deterministic model (1) is computed as

R0 =
c(µ+ θ)Kβ1b1
(µ+ Γφ+ θ)b4

, (2)

where b1 = µ+ k2 + α+ k1
β2
β1

and b4 = (µ+ k1)(µ+ k2) + αµ).
The function Γ provides the information on how susceptible individuals at high-risk section

respond or default to PrEP programme. We assume that the drug has the ability to produce the
desired result (efficacy) after a certain clinical trial. In fact, the PrEP effectiveness is also directly
linked to an individual’s proper adherence to the programme. Thus, a complete adherence to the
PrEP programme indicates a big change in infection risk. However, in real life, a minor default
rate to the PrEP programme is inevitable. The default can result by the necessity for daily
drug intake, which often makes it difficult for individual to comply with the PrEP programme
and the cost of PrEP to adhere to the once-daily regimen. The default rate θ takes this form:
θ = f−1[Γ]. In fact, Γ serves the basis for the calculation of θ and vice versa. Therefore, in our
sample simulations, we choose the default rate to be θ = −0.01Γ + 0.0101 for Γ highly effective
(100%). An increase in the default rate does not necessary mean the drug did not produce its
effect, but rather the medication was not used effectively.

2.2 HIV stochastic model

Throughout this paper we assume to have a complete probability space (Ω,F ,P) with a filtration,
{Ft}t≥0, that is right continuous and with F0 containing all the subsets having measure zero.

Consider an equation of the form (3) below, for an k-dimensional Brownian motion B(t) on
Ω.

dx(t) = f(t, x)dt+ g(t, x)dB(t) t ≥ 0. (3)

A solution with initial value x(0) = x0 is denoted by x(t, x0). Assume that f(t, 0) = g(t, 0) = 0
for all t ≥ 0, so the origin point is an equilibrium of (3).

By L we denote the infinitesimal generator of an equation of the form (3), see [17] of Øksendal,
defined for a function V (t, x) ∈ C1,2(R+ × Rk).
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We introduce white noise type stochastic perturbations directly proportional to the classes
S, I1, I2, A and E into the model system (1). Let B(t) = (B0(t), B1(t), B2(t), B3(t), B4(t)) be a
5-dimensional Brownian motion B(t) defined on the given probability space. The components
of the 5-dimensional Brownian motion Bi are assumed to be mutually independent. The non-
negative constants σ0, σ1, σ2, σ3 and σ4 symbolize the intensities of the stochastic perturbations.
We have the following stochastic model:

dS(t) = [µK − λS(t)− (µ+ Γφ)S + θE]dt+ σ0S(t)dB0(t),

dI1(t) = [λS(t)− (µ+ k1)I1(t) + αI2(t)]dt+ σ1I1(t)dB1(t),

dI2(t) = [k1I1(t)− (µ+ k2 + α)I2(t)]dt+ σ2I2(t)dB2(t),

dA(t) = [k2I2 − (µ+ δ)A]dt+ σ3A(t)dB3(t),

dE(t) = [ΓφS − (µ+ θ)E]dt+ σ4E(t)dB4(t), (4)

where λ = c(β1I1(t) + β2I2(t)).
Let us define the following notation:

Rn++ = {x ∈ Rn|xi > 0 for all i = 1, 2, .., n}. (5)

In what follows we now show that solutions of (4) exist globally and are (a.s) positive
and (a.s) bounded over compact intervals. We follow a methodology that has been popularly
used, [11,14,15] for instance.

Theorem 1. For any initial value (S(0), I1(0), I2(0), A(0), E(0)) ∈ R5
++ of model (4), there is

(a.s) a unique positive solution (S(t), I1(t), I2(t), A(t), E(t)) on the interval t ∈ [0,∞).

Proof. All the coefficients of the system (4) are locally Lipschitz continuous. Thus there exists
a unique local solution on t ∈ [0, τe), where τe is the explosion time. We show the solution is
global almost surely, that is, we prove that τe =∞ a.s.

Let n0 > 0 be sufficiently large such that S(0), I1(0), I2(0), A(0) and E(0) sit in the interval
[1/n0, n0]. A sequence of stopping times is defined as follows:

τn = inf
{
t ∈ [0, τe) : min{S(t), I1(t), I2(t), A(t), E(t)} ≤ 1

n

or max{S(t), I1(t), I2(t), A(t), E(t)} ≥ n
}
,

and with our conventional notation inf∅ = ∞. It is obvious that τn increases. We write
τ∞ = limn→∞ τn, and we note that τ∞ ≤ τe (a.s.). It suffices to show that

τ∞ =∞ a.s., (6)

and then τe = ∞ a.s., so (S(t), I1(t), I2(t), A(t), E(t)) ∈ R5
++ for all t ≥ 0 almost surely (a.s.).

Now suppose that (6) is not true. Then, there exists T > 0 and ε ∈ (0, 1) such that

P{τ∞ ≤ T} > ε. (7)

Thus, there is an integer n1 ≥ n0 such that

P{τn ≤ T} ≥ ε ∀n ≥ n1.
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Consider the function V1 defined by

V1(S, I1, I2, A,E) =
(
S − a0 − a0 ln

S

a0

)
+
(
I1 − 1− ln I1

)
+
(
I2 − 1− ln I2

)
+
(
A− 1− lnA

)
+
(
E − 1− lnE

)
.

Note that each of the five bracketed terms are non-negative while (S, I1, I2, A,E) ∈ R5
++. Choose

a0 > 0 sufficiently small in order to have a0cβ1 < µ and a0cβ2 < µ. By applying the Itô’s formula
we have,

dV1(S, I1, I2, A,E) = LV1dt+ (S − a0)σ0dB0(t) + (I1 − 1)σ1dB1(t)

+(I2 − 1)σ2dB2(t) + (A− 1)σ3dB3(t)

+(E − 1)σ4dB4(t), (8)

where

LV1 =
[(

1− a0

S

)(
µK − λS(t)− (µ+ Γφ)S + θE

)]
+
[(

1− 1

I1

)
×(

c(β1I1 + β2I2)S − (µ+ k1)I1 + αI2

)]
+
[
(1− 1

I2
)(k1I1 − (µ+ k2 + α)I2)

]
+
[
(1− 1

A
)(k2J − (µ+ δ)A)

]
+
[
(1− 1

E
)(ΓφS − (µ+ θ)E)

]
+

1

2

(
a0σ

2
0 + σ2

1 + σ2
2 + σ2

3 + σ2
4

)
= µK − a0

S
µK − µ(S + I1 + I2 +A+ E)− a0

S
θE + a0(µ+ Γφ)

+a0c(β1I1 + β2I2)− 1

I1
c(β1I1 + β2I2)S + (µ+ k1)− 1

I1
αI2

+(µ+ k2 + α)− 1

A
k2J + (µ+ δ)− 1

E
ΓφS + (µ+ θ)

+
1

2

(
a0σ

2
0 + σ2

1 + σ2
2 + σ2

3 + σ2
4

)
,

LV1 ≤ µK − µ(I1 + I2) + a0c(β1I1 + β2I2) + 4µ+ a0(µ+ Γφ) + k1 + k2

+α+ δ + θ +
1

2

(
a0σ

2
0 + σ2

1 + σ2
2 + σ2

3 + σ2
4

)
.

By the choice of a0 we have:

a0cβ1I1 − µI1 = I1 (a0cβ1 − µ) < 0 and a0cβ2I2 − µI2 = I2 (a0cβ2 − µ) < 0.

Therefore
LV1 ≤ C,

where

C = µK + 4µ+ a0(µ+ Γφ) + k1 + k2 + α+ δ + θ

+
1

2

(
a0σ

2
0 + σ2

1 + σ2
2 + σ2

3 + σ2
4

)
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is a constant.

The rest of the proof is similar and we omit. At the end we deduce that τ∞ = ∞. This
completes the proof.

Proposition 1. If σ0 = 0 and σ4 = 0, then (a.s.), S(t) + E(t) ≤ K for all t > 0.

Proof. If σ0 = σ4 = 0, then

d(K − S(t)− E(t)) = −µK + λS(t) + µ(S(t) + E(t))

≥ −µ(K − S(t)− E(t)) (a.s.),

since by Theorem 1, λS(t) > 0 for all t (a.s.). Therefore, since K − S(0)− E(0) ≥ 0, it follows
that K − S(t)− E(t) ≥ 0 for all t > 0 (a.s.). This implies also that S ≤ K.

3 Almost sure exponential stability

The following subset Φ of sample paths will be of interest:

Φ =
{
ω ∈ Ω| (S(t, ω), I1(t, ω), I2(t, ω), A(t, ω), E(t, ω)) ∈ R5

++ for all t ≥ 0
}
.

From Theorem 1 it follows that P(Ω\Φ) = 0. In the remainder of this section we assume that
sample paths are restricted to Φ.

Definition 1. (see [11]). The equilibrium x = 0 of the system (3) is said to be almost surely
exponentially stable if for all x0 ∈ Rn,

lim sup
t→∞

1

t
ln |x(t, x0)| < 0 a.s.

In the following, we introduce some more concepts leading to our main theorem on almost
sure exponential stability. Assuming that σ0 = σ4 = 0, then the model system (4) exhibits a
disease-free equilibrium

E0 = (
(µ+ θ)K

(µ+ Γφ+ θ)
, 0, 0, 0,

ΓφK

(µ+ Γφ+ θ)
).

Remark 1. We introduce the new invariant Rσ for the model, that will serve as an indicator
of stability. To this end we require a function h : (0, 1] → R+, and we fix two numbers b1 and
b2:

b1 =

(
µ+ k2 + α+ k1

β2

β1

)
, b2 =

(
α+

β2

β1
(µ+ k1)

)
.

Now let h be given by the formula

h(x) =
(σ1x)2 + (σ2(1− x))2

x/b1 + β2
β1

(x− 1)/b2
. (9)
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Note that for x ∈ (0, 1], the denominator of this expression will always be positive. We also note
that limx→0+ h(x) 6= 0. Therefore, h has a least value, h∗, which is positive. The positivity of h∗
is important and we define:

Rσ =
c(µ+ θ)Kβ1(µ+ k2 + α+ k1

β2
β1

)

(µ+ Γφ+ θ)(b4 + h∗/2)

We define, for any b0, b1, b2, b3

Z(t) = b0(K − (S(t) + E(t)) + b1I1(t) + b2I2(t) + b3A(t), (10)

and let V2(t) = lnZ(t) . For a stochastic process x(t) we write

〈x〉t =
1

t

∫ t

0
x(s)ds.

Proposition 2. Consider the model system (4) in the special case that σ0 = σ4 = 0. The
disease-free equilibrium is almost surely exponentially stable if

lim sup
t→∞

〈LV2(X)〉t < 0 (a.s.).

Proof. We start off by noting that

V2(X(t)) = V2(X(0)) +

∫ t

0
LV2(X(u))du+Mt,

where

Mt =

∫ t

0

(
−b0σ0

S(u)

Z(X(u))
dB0(u) + b1σ1

I1(u)

Z(X(u))
dB1(u) + b2σ2

I2(u)

Z(X(u))
dB2(u)

+b3σ3
A(u)

Z(X(u))
dB3(u)− b0σ4

E(u)

Z(X(u))
dB4(u)

)
The strong law of large numbers for local martingales, see [11, p12] for instance, implies that

lim
t→∞

1

t
Mt = 0 (a.s.).

Also, we observe that

lim
t→∞

1

t
V2(X(0)) = 0.

Therefore

lim sup
t→∞

1

t
V2(X(t)) = lim sup

t→∞

1

t

∫ t

0
LV2(X(u))du = lim sup

t→∞
〈LV2(X)〉t (a.s.).

This completes the proof.



A stochastic model for HIV with the use of PrEP 545

We now calculate LV2 for the special case that σ0 = σ4 = 0. .

LV2 = −µb0
[K − (S + E)]

Z
+
I1

Z
[(b0 + b1)cβ1S − b1(µ+ k1) + b2k1]

+
I2

Z
[(b0 + b1)cβ1S + b1α− b2(µ+ k2 + α) + b3k2]

−b3(µ+ δ)
A

Z
− 1

2Z2

(
b21σ

2
1I

2
1 + b22σ

2
2I

2
2 + b23σ

2
3A

2
)
. (11)

By [19, Lemma 2.3], for every sample path w of the Wiener process W (t), there exists an
unbounded increasing sequence tn of positive time values for which

lim sup
t→∞

LV2(t, w) = lim
n→∞

LV2(tn, w),

and for which we can define the following limits:

s = lim
n→∞

〈S〉tn , i1 = lim
n→∞

〈
I1

Z

〉
tn

, i2 = lim
n→∞

〈
I2

Z

〉
tn

, a = lim
n→∞

〈
A

Z

〉
tn

,

and

q = lim
n→∞

〈
K − (S + E)

Z

〉
tn

.

In particular we note the identity

b0q + b1i1 + b2i2 + b3a = 1, (12)

and the fact:

b0q, b1i1, b2i2, b3a ∈ [0, 1].

We define F (b) as:

F (b) = F (b0, b1, b2, b3) = lim sup
t→∞

LV2(t).

Then F (b) takes the form:

F (b) = −µb0q + [(b0 + b1)cβ1s− b1(µ+ k1) + b2k1]i1

+[(b0 + b1)cβ1s+ b1α− b2(µ+ k2 + α) + b3k2]i2

−b3(µ+ δ)a− 1

2

(
b21σ

2
1i

2
1 + b22σ

2
2i

2
2 + b23σ

2
3a

2
)

(13)

Noting that s < K. We drop the last term in (13) −1
2b

2
3σ

2
3a

2, then we obtain the inequality

F (b) ≤ −µb0q + [(b0 + b1)cβ1K − b1(µ+ k1) + b2k1]i1

+[(b0 + b1)cβ1K + b1α− b2(µ+ k2 + α) + b3k2]i2

−b3(µ+ δ)a− 1

2

(
b21σ

2
1i

2
1 + b22σ

2
2i

2
2

)
(14)
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Theorem 2. Consider the model system (4) in the special case that σ0 = σ4 = 0. If

Rσ <
µ+ θ

µ+ Γφ+ θ
,

then (I1(t), I2(t)) converges exponentially to (0, 0) (a.s.)

Proof. Consider b = (0, b1, b2, 0) from V2. Then equation (13) yields

F (b) ≤ b1cK(β1i1 + β2i2) + [−b1(µ+ k1) + b2k1]i1

+[b1α− b2(µ+ k2 + α)]i2

−1

2

(
b21σ

2
1i

2
1 + b22σ

2
2i

2
2

)
, (15)

Now we observe that if we write x = b1i1 and note that b2i2 = 1− x, then

(b1σ1i1)2 + (b2σ2i2)2 = (i1 + i2
β2

β1
)

[
(σ1x)2 + (σ2(1− x))2

x/b1 + β2
β1

(1− x)/b2

]

= (i1 + i2
β2

β1
)(h(x))

= (i1 + i2
β2

β1
)h∗.

Therefore, F (b) ≤ i1C1 + i2C2, where

C1 = b1cβ1K − b1(µ+ k1) + b2k1 −
h∗
2

C2 = b1cβ2K − b2(µ+ k2 + α) + b1α−
β2

β1

h∗
2
,

Simplifying gives

C1 = b1cβ1K − b4 −
h∗
2
.

Since

Rσ <
µ+ θ

µ+ Γφ+ θ
,

it follows that C1 < 0. Also C2 = β2
β1
C1 < 0. This completes the proof.

Theorem 3. If σ0 = σ4 = 0 and Rσ < µ+θ
µ+Γφ+θ , then the disease-free equilibrium is almost

surely exponentially stable.

Proof. The proof is by contradiction. From Theorem 2 we know that limt→∞ I1(t) = 0 (a.s)
and limt→∞ I2(t) = 0 (a.s). Let us now suppose, contrary to the claim of this theorem, that for
some subset Θ of Φ with P(Θ) > 0, on Θ we have:

lim
t→∞

[(K − (S(t) + E(t)) +A(t)] 6= 0. (16)
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Now let Z be as in (10) and F (b) as in (13). In particular we choose b0 = b1 = b2 = b3 = 1.
Then in view of (16) and by the definition of i1 and i2 , on Φ we have i1 = 0 and i2 = 0 (a.s).
Thus, from (13) it follows that

F (b) ≤ −µq − (µ+ δ)a− 1

2
(σ3a)2 (a.s).

Therefore, F < 0 (a.s). Then by Proposition 2 it follows that on Θ, we have that limt→∞(K −
(S(t) + E(t)) = 0 (a.s) and limt→∞A(t) = 0 (a.s). This a contradiction, and it completes the
proof.

Remark 2. For the next stability theorem we consider the special case of model (4) in which
we assume the following conditions:

σ0 = 0, σ4 = 0, θ = 0.

In this case we define a stochastic process {Y (t)} as follows:

Y (t) = λb1g

(
S(t)

Λ

)
+ b1I1(t) + b2I2(t),

with g(x) := x− 1− ln(x), Λ = (µ+θ)K
(µ+Γφ+θ) and with b1, b2 as before. Let V3(t) = lnY (t).

Theorem 4. Consider the special case of model (4) under assumptions as in Remark 2. If
R0 < 1 then the 3-tuple (S(t), I1(t), I2(t)) converges exponentially to (Λ, 0, 0) (a.s).

Proof. Let Y (t) and V3(t) be as above. It suffices to prove that

lim
t→∞

supV3(Y (t)) < 0.

Following similar arguments as earlier in this section, it suffices to prove that

lim
t→∞

sup 〈LV3(Y )〉 < 0.

Now we calculate LV3(Y (t)).

LV3(Y (t)) =
b1
Y

(
1− Λ

S

)
[Λ− c(β1I1 + β2I2)S − (µ+ Γφ)S]

+
b1
Y

[c(β1I1 + β2I2)S − (µ+ k1)I1 + αI2]

+
b2
Y

[k1I1 − (µ+ k2 + α)I2]− 1

2

[
(b1σ1I1)2 + (b2σ2I2)

]
≤ b1

Y

(
1− Λ

S

)
[(µ+ Γφ)(λ− S)]− b1

Y
λS +

b1
Y
λΛ

+
b1
Y

[c(β1I1 + β2I2)S − (µ+ k1)I1 + αI2]

+
b2
Y

[k1I1 − (µ+ k2 + α)I2]− 1

2

[
(b1σ1I1)2 + (b2σ2I2)

]
.
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Therefore we obtain

LV3(Y ) < −(b1µ+ Γφ)

S

(Λ− S)2

Y
+D1

I1

Y
+D2

I2

Y
,

where, similarly as in the proof of Theorem 2 we have:

D1 = b1cβ1Λ− b1(µ+ k1) + b2k1,

D2 =
β2

β1
D1.

Since R0 < 1, it follows that D1 < 0. Consequently also D2 < 0. Therefore, LV3(Y (t)) < 0.

4 Numerical simulation

We use the Euler-Maruyama scheme for our simulations. It is more or less the standard way
of working on applications of SDEs, in view of all the complications that come with higher
order simulations, see [8]. In our sample simulations, we perform a projection by using the
South African HIV trend since 2018. Some of the parameters values are summarized in Table
(1) below:

Table 1: The following parameters values are fixed:

Parameters Value Source

α 0.25 Estimate, cf. 5

k1 0.125 [10]
k2 0.1 [1]
c 3 Estimate, cf. [9, 16]
δ, µ resp. 0.2206, 1

64.2 Estimate,cf. 6

4.1 Details on estimation of parameters

In 2018 the total population of South Africa was estimated at 57.73 million7. Thus, our total
population size is taken to be 58 million. The prevalence of HIV/AIDS and incidence rates were
both estimated at 13.06% (7.53 million) and 1.2% (692760 new infections) in 2018 respectively.
In 2018, an estimated 3.4 million individuals diagnosed with HIV have been on ART treatment.
The number of AIDS death related cases is estimated at 115167 (22.06%) in 2018. The current
estimated number of people with PrEP varies between 13,500-14,5008 and the country has a
target to have many people enrolled with PrEP by the end of 2019 or 2020. The papers [9, 16]

5https://www.tbfacts.org/hiv-statistics-south-africa/ [Access date 01 July 2019].
6StatsSA. Mid-year population estimates 2018; statistical release P0302.
7StatsSA. Mid-year population estimates 2018; statistical release P0302.
8https://www.prepwatch.org/country/south-africa/ [Access date 29 June 2019]

https://www.tbfacts.org/hiv-statistics-south-africa/
https://www.prepwatch.org/country/south-africa/
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estimate the average number of sexual partners per given time denoted by c; values ranging
from 1 to 2 for a specific case. In our case we find it convenient to take c = 3. The values of β1

and β2 are not easily obtainable, but in our sample simulations the following inequality β1 < β2

holds, because in real life the intensity of disease transmission in the symptomatic phase should
exceed that of the asymptomatic phase.

4.2 Initial conditions

We denote by t0 the time 23 July 2018 and we also note that

N(t0) = S(t0) + I1(t0) + I2(t0) +A(t0) + E(t0).

Thus, from an estimated 7.53 million of the total population infected with HIV/AIDS in 2018,
our aim is to split this number between the classes of I1(t0), I2(t0) and A(t0), see for instance [13].
Together with the Γ already introduced, we assign the following initial values:

S0 = 50.19, E0 = 0.00155, I1,0 = 5.42, I2,0 = 1.43, A0 = 0.68

In the following we only show the trajectories of infectious class I2(t). We use the parameter
values as in Table 1. For a certain value of φ, we write R0(φ) for the underlying deterministic
model and Rσ(φ) for the stochastic model.
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Figure 2: No convergence to the disease-free equilibrium.
Chosen values: β1 = 0.0155, β2 = 0.049, σ1 = 0.015, σ2 = 0.02. Calculated values:

R0(0.01) = 1.021,Rσ(0.01) = 1.002.

In Figure 2, for φ = 0.01, σ1 = 0.015 and σ2 = 0.02, R0(0.01) = 1.021 while Rσ(0.01) =
1.002 > 1. In this case, Theorem 2 does not guarantee almost sure exponential stability and
indeed there does not seem to have convergence to the disease-free equilibrium. In Figure
4, decreasing the value of β2 while increasing σ1 results in decreasing the basic reproduction
number to R0(0.01) = 1.002 > 1 while Rσ(0.01) = 0.9714 < 1. The disease-free equilibrium is
almost sure exponentially stable. In this case, we have expected the disease to converge to zero
according to Theorem 3. In most of the figures not illustrated here, it is found that a substantial
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Figure 3: Convergence to the disease-free equilibrium R0(φ) < 1.
Chosen values: β1 = 0.0155, β2 = 0.048, σ1 = 0.0225, σ2 = 0.0132. Calculated values:

R0(0.01) = 1.002,Rσ(0.01) = 0.9714.

Figure 4: Mean of 1000 discretized Brownian paths.
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Figure 5: Mean of 1000 discretized Brownian paths and along 5 individual paths.
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change in the value of the basic reproduction number was due to both increasing uptake of PrEP
and the stochastic perturbations, which led to decreasing the value of the the class of I2. It
was also seen that the function Γ has established a good relationship between both R0(φ) and
Rσ(φ). Thus, decreasing Γ by 5% leads to increasing R0(φ) from 1.021 to 1.033 and Rσ(φ) from
1.002 to 1.014. It is also noticed that every 5% decrease in the Γ will result in an increase of
both R0(φ) and Rσ(φ) by 1.175% (0.012 unit increase). For instance, if Γ decreases by 0.90,
then both R0(φ) and Rσ(φ) will be respectively 1.045 and 1.026. Thus, for Γ equal to 0.85, then
both R0(φ) and Rσ(φ) will be respectively 1.057 and 1.038. Therefore, Γ is an inverse function
of both the default rate and basic reproduction number. Figures 4 and 5 display the maximum
discrepancy between the sample average and the exact expected value over all points. For a
sample size of 1000 paths, the average is found to be 0.0768. Decreasing the number of sample
for instance by 800 paths, the average decreases by 0.0772. Increasing the number of samples
to 2000 increases the average to 0.0779.

5 Concluding remarks

This paper investigated a stochastic model describing the population dynamics of HIV with
pre-exposure prophylaxis (PrEP). We proved existence of solutions which are almost surely
global and positive by using Lyapunov techniques. We also proved a theorem on almost sure
exponential stability of the disease-free equilibrium (Theorem 3). From Theorem 3, we found
that the disease-free equilibrium is almost surely exponentially stable whenever the requirement
is fulfilled. The simulations show that minor stochastic perturbations on the model has a
stabilizing effect. The range of the indicating invariant R0 specified in Theorem 4 can be
improved, seeing that it does not mention the perturbation parameters. Nevertheless, the upper
bound becomes closer to maximal as σ1 and σ2 approach 0. Likewise the range of Rσ as specified
in Theorem 2 becomes closer to maximal as Γφ approaches 0. Our model has showed that if
PrEP is being used efficiently, then the number of infectious can potentially be reduced, and even
when minor stochastic perturbations are taken into account. We also showed that stochastic
framework with PrEP predicts extinction rather than persistence of the disease. Furthermore,
we have observed that decreasing the value of Γ leads to increasing both the basic reproduction
and the default rate. In fact, the effectiveness of PrEP is closely linked to an individual proper
adherence to the programme. For instance, people who adhere to PrEP programme are advised
to take medication on a daily basis and not to default. They have also been advised to combine
use of PrEP with condoms and other safer sex practices. The risk of HIV infection may increase
substantially if the default rate keeps increasing. It can be ideal to investigate the impact of
opportunistic infections such as flu or COVID-19 on the population dynamics of HIV.
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