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Abstract. In the current investigation, the distributed order fractional derivative operational
matrix based on the Legendre wavelets (LWs) as the basis functions is derived. This operational
matrix is applied together with collocation method for solving distributed order fractional differ-
ential equations. Also, convergence analysis of the proposed scheme is given. Finally, numerical
examples are presented to show the efficiency and superiority of the mentioned scheme.
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1 Introduction

The distributed order fractional differential equations (DOFDEs) are used as a source of various
mathematical physics, chemistry, biology and engineering problems such as viscoelastic model
[1, 12], control systems [34], distributed order oscillator [2], complex system [4, 15], diffusion [5]
etc. (The reader can find the concept of the distributed order in the works of Caputo [8, 9]).
The existence and the uniqueness of solution of DOFDEs have been studied in [3, 7, 11, 25].
While different approximate approaches have been introduced for solving of fractional differential
equations (FDEs) (see e.g., [28,29,31]), there has been less researches into the study of DOFDEs.
Most of DOFDEs do not have analytic solutions, so numerical techniques are used for solving
DOFDEs. For example, we can mention Petrov-Galerkin scheme [19], meshless scheme [6],
Chebyshev collocation scheme [24], Legendre spectral element scheme [10], classical numerical
quadrature scheme [21], Bernoulli hybrid functions [22], Laplace and Fourier transforms [16],
block pulse function [13], and Legendre operational matrix [14].
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In this work, we adopt the following DOFDEs as∫ β2

β1

ρ(α)Dα
t z(t)dα = g(t), (1)

with the initial conditions

z(n)(0) = δn, n = 0, . . . , dβ2e − 1, (2)

where d.e is the ceiling function.
Wavelets are a special type of functions with different properties such as: compact support,

orthogonality, exact representation of polynomials to a certain degree and ability to represent
functions at different levels of resolution [14]. In recent years, different wavelets operational
matrices for both fractional differentiation and fractional integration have been calculated for
solving various kinds of FDEs, for instance operational matrices of fractional-order Legendre
wavelets [30], Müntz-Legendre wavelets [27], Bernoulli wavelets [26], Chebyshev wavelets [20],
Haar wavelets [32], etc. The operational matrix scheme is usually combined with schemes such
as spectral tau scheme, collocation scheme and tau scheme for finding numerical solution of
FDEs.

The main goal of this work is to calculate the distributed order fractional derivative opera-
tional matrix for the Legendre wavelets. By using this matrix and collocation scheme, we reduce
the solution of the Eqs. (1) and (2) to the solution of algebraic equations.

The remainder of this article is organized as follows. In Section 2, we remind some basic
definitions of the fractional calculus and Legendre wavelets. In Section 3, distributed order
fractional derivative operational matrix of Legendre wavelets is derived. In Section 4, we apply
this operational matrix and collocation method for finding numerical solution of DOFDEs. In
Section 5, we investigate the error analysis for our method. Section 6 demonstrates results of
the proposed technique. In Section 7, we propose a conclusion.

2 Preliminaries and fundamentals

2.1 Fractional calculus

Definition 1. [29] The Riemann-Liouville fractional integral with order ν is introduced as

Iνt z(t) = 1
Γ(ν)

∫ t
0 (t− τ)ν−1z(τ)dτ, t > 0.

Definition 2. [29] The Caputo fractional derivative of order ν is introduced as

D∗νt z(t) = 1
Γ(n−ν)

∫ t
0 (t− τ)n−ν−1z(n)(τ)dτ, n− 1 < ν < n.

Proposition 1. [29] The Caputo fractional derivatives and the Riemann-Liouville fractional
integrals satisfy:
1. D∗νt I

ν
t z(t) = z(t),

2. Iνt D
∗ν
t z(t) = z(t)−

∑n−1
i=0 z

(i)(0) t
i

i! ,
3. D∗νt z(t) = In−νt D∗nt z(t),
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4. D∗νt (λz1(t) + θz2(t)) = λD∗νt z1(t) + θD∗νt z2(t),

5. D∗νt t
β =

{
0, ν ∈ N0, β < ν,

Γ(β+1)
Γ(β+1−ν) t

β−ν , otherwise,

6. D∗νt λ = 0,
where λ, θ are real constants and n− 1 < ν ≤ n.

2.2 The distributed order differential

Definition 3. [17] The distributed order fractional differential is defined by means of

D
∗ρ(α)
t z(t) =

∫ β2

β1

ρ(α)D∗αt z(t)dα, (3)

where ρ(α) is the weight function of distribution with order α that is a non-negative and a
generalized function. Also, β1 and β2 are non-negative real numbers.

Proposition 2. The operator D
∗ρ(α)
t satisfies the following properties

• D∗ρ(α)
t

(∑̀
k=1

θ`z`(t)

)
=
∑̀
k=1

θ`D
∗ρ(α)
t z`(t),

• D∗ρ(α)
t λ = 0,

where {θ`}k`=1 and λ are constants.

Remark 1. If ρ(α) = δ(α− µ), β1 < µ < β2, then we have

D
∗ρ(α)
t z(t) =

∫ β2

β1

δ(α− µ)D∗αt z(t)dα = D∗µt z(t),

where δ is the Dirac delta function.

2.3 Legendre wavelets

The Legendre wavelets ψnm(t) is introduced over interval [0, 1) as [23]

ψn,m(t) =

{ √
2m+ 12

k−1
2 Lm(2k−1t− n̂), n̂

2k−1 ≤ t < n̂+1
2k−1 ,

0, otherwise,
(4)

where m = 0, 1, 2, . . . ,M − 1; n = 1, 2, . . . , 2k−1 and Lm(t) are the Legendre polynomials of
order m which satisfy the recurrence relation

Lm+1(t) =
(2m+ 1)(2t− 1)

m+ 1
Lm(t)− m

m+ 1
Lm−1(t), m = 1, 2, . . . ,

L0(t) = 1, L1(t) = 2t− 1.

The Legendre polynomials are orthogonal with
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∫ 1

0
Lm(t)Ln(t)dt =

{
1

2m+1 , m = n,

0, m 6= n.

Also, the Legendre polynomials have the following explicit analytic form

Lm(t) =
m∑
r=0

(−1)m+r (m+ r)!

(m− r)!(r!)2
tr.

Any function z(t) over [0, 1) can be approximated by means of the Legendre wavelets as follows

z(t) =

∞∑
n=1

∞∑
m=0

cnmψnm(t), (5)

where the coefficients cnm are given by

cnm =< z, ψnm >=

∫ 1

0
f(t)ψnm(t)dt, (6)

where <,> denotes the inner product in L2[0, 1]. If the infinite series in Eq. (5) is truncated,
then we get

z(t) ' zm̂(t) =
2k−1∑
n=1

M−1∑
m=0

cnmψnm(t) = CTΨ(t),

where C and Ψ(t) are 2k−1M × 1, vectors given by

C = [c10, c11, . . . , c1(M−1), c20, . . . , c2(M−1), . . . , c2k−10, . . . , c2k−1(M−1)]
T

= [c1, c2, c3, . . . , cm̂]T , m̂ = 2k−1M, (7)

and

Ψ(t) = [ψ10(t), ψ11(t), . . . , ψ1(M−1)(t), . . . , ψ2k−10(t), . . . , ψ2k−1(M−1)(t)]
T

= [ψ1(t), ψ2(t), ψ3(t), . . . , ψm̂(t)]T . (8)

2.4 Transformation matrix of Legendre wavelets to piecewise Taylor func-
tions

The piecewise Taylor functions (PTFs) is defined on [0, 1) as [23]

φn,m(t) =

{
tm, n̂

2k−1 ≤ t < n̂+1
2k−1 ,

0, otherwise,
(9)

where m = 0, 1, 2, . . . ,M−1 and n = 1, 2, . . . , 2k−1. The LWs can be expanded into m̂ = 2k−1M
set of the PTFs as

Ψm̂×1(t) = P−1
m̂×m̂Φm̂×1(t), (10)
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where P−1 is the transformation matrix of the LWs to the PTFs. This matrix is obtained in [23]
as

φi =

m̂∑
j=1

= pijψj(t), i = 1, 2, . . . , m̂,

where

Φ(t) = [φ10(t), φ11(t), . . . , φ1(M−1)(t), . . . , φ2k−10(t), . . . , φ2k−1(M−1)(t)]
T

= [φ1(t), φ2(t), φ3(t), . . . , φm̂(t)]T . (11)

and pij =< φi, ψj >, i, j = 1, 2, . . . , m̂.

3 Derivative operators

3.1 Distributed order fractional derivative operator

In this section, we construct distributed order fractional derivative operator of LWs, for this
aim, first we present the following Lemmas.

Lemma 1. Let ηj and ωj be the nodes and the weights of the Legendre-Gauss quadrature rule,
respectively. Then the following relation for i ∈ N, i ≥ dβ2e holds:

D
∗ρ(α)
t ti =

β2 − β1

2

s∑
j=1

ωjρ(
β2 − β1

2
ηj +

β2 + β1

2
)

i!ti−
β2−β1

2
ηj−

β2+β1
2

Γ(i+ 1− β2−β1
2 ηj − β2+β1

2 )
. (12)

Proof. By applying Eqs. (3) and the Legendre-Gauss quadrature formula, yield

D
∗ρ(α)
t ti =

∫ β2

β1

ρ(α)D∗αt tidα =

∫ β2

β1

ρ(α)
i!ti−α

Γ(i+ 1− α)
dα

=
β2 − β1

2

∫ 1

−1
ρ(
β2 − β1

2
α′ +

β2 + β1

2
)

i!ti−
β2−β1

2
α′−β2+β1

2

Γ(i+ 1− β2−β1
2 α′ − β2+β1

2 )
dα′

=
β2 − β1

2

s∑
j=1

ωjρ(
β2 − β1

2
ηj +

β2 + β1

2
)

i!ti−
β2−β1

2
ηj−

β2+β1
2

Γ(i+ 1− β2−β1
2 ηj − β2+β1

2 )
,

which completes the proof.

Lemma 2. For i = 0, 1, . . . , dβ2e − 1, we get D
∗ρ(α)
t ti = 0.

Proof. The proof is established by Eq. (3) and Lemma 1.

Now, by considering Lemmas 1, 2 and Eq. (10), we get

D
∗ρ(α)
t Ψ(t) = R(β1, β2, ρ(α), t) = P−1Λ(β1, β2, ρ(α), t), (13)
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where R(β1, β2, ρ(α), t) and Λ(β1, β2, ρ(α), t) are distributed order fractional derivative operators
of the LWs and the PTFs, respectively.

The Distributed order fractional derivative operator of the PTFs is given as:

Λ(β1, β2, ρ(α), t) = [0, 0, . . . , θ(dβ2e), . . . , θ(M − 1), 0, 0, . . . , θ(dβ2e), (14)

. . . , θ(M − 1), . . . , 0, 0, . . . , θ(dβ2e), . . . , θ(M − 1)],

where

θ(i) =
β2 − β1

2

s∑
j=1

ωjρ(
β2 − β1

2
ηj +

β2 + β1

2
)

i!ti−
β2−β1

2
ηj−

β2+β1
2

Γ(i+ 1− β2−β1
2 ηj − β2+β1

2 )
, (15)

for i = dβ2e, . . . ,M − 1.

3.2 Integer-order derivative operator

Now, we obtain integer-order derivative operator of Legendre wavelets D∗(n, t) as

D
(n)
t Ψ(t) = D∗(n, t) = P−1D(n, t), (16)

where D(n, t) is integer-order derivative operator of the piecewise Taylor functions. This oper-
ator is obtained as

D(n, t) = [0, 0, . . . , τ(n), . . . , τ(M − 1), 0, 0, . . . , τ(n), . . . , (17)

τ(M − 1), . . . , 0, 0, . . . , τ(n), . . . , τ(M − 1)],

where τ(i) =
n−1∏
j=0

(i− j)ti−n, i = n, n+ 1, . . . ,M − 1.

4 Implementation of the scheme to the DOFDEs

Consider distributed order fractional differential equations of the form∫ β2

β1

ρ(α)D∗αt z(t)dα = g(t), (18)

with the initial conditions

z(n)(0) = δn, n = 0, . . . , dβ2e − 1. (19)

For finding numerical solution of problem (18) - (19), we approximate z(t) by LWs as

z(t) ' zm̂(t) =

2k−1∑
n=1

M−1∑
m=0

cnmψnm(t) = CTΨ(t). (20)

By combing Eq. (13) with Eq. (20), the following relation is obtained:

D
∗ρ(α)
t z(t) ' D∗ρ(α)

t zm̂(t) = CTD
∗ρ(α)
t Ψ(t) = CTR(β1, β2, ρ(α), t). (21)
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Also, Eq. (18) can be written in the following relation:

CTR(β1, β2, ρ(α), t)− g(t) = 0. (22)

Now, we collocate Eq. (22) at the m̂− dβ2e zeros of shifted Legendre polynomials as

CTR(β1, β2, ρ(α), ti)− g(ti) = 0, i = 1, 2, . . . , m̂− dβ2e. (23)

Also, using Eqs. (16), (19) and (20), we obtain

Z(n)(0) ' CTD∗(n, 0) = δn, n = 0, 1, . . . , dβ2e − 1. (24)

Hence, Eqs. (23) and (24) create a system of m̂ algebraic equations. This system can be solved
using Newton’s iterative scheme for finding the unknown vector C. Thus function z(t) calculated
by Eq. (20).

5 Error analysis

In this part, we derive the error estimates of numerical approximation using Legendre wavelets.
Let zm̂(t) is the approximation of z(t) as:

zm̂(t) =
2k−1∑
n=1

M−1∑
m=0

cnmψnm(t). (25)

Therefore,

z(t)− zm̂(t) =
∞∑

n=2k−1+1

∞∑
m=M

cnmψnm(t). (26)

Theorem 1. Suppose that function z(t) is approximated by truncated Legendre wavelets series

zm̂(t) =
∑2k−1

n=1

∑M−1
m=0 cnmψnm(t) and |z′′(t)| < Q (Q is a finite constant), then the upper bound

of error can be obtained as follows:

‖z(t)− zm̂(t)‖2 <

√√√√3Q2

8

∞∑
n=2k−1+1

∞∑
m=M

1

n5(2m− 3)4
. (27)

Proof. By using the orthonormality of the Legendre wavelets, we ge

‖z(t)− zm̂(t)‖22 =

∫ 1

0
|z(t)− zm̂(t)|2dt =

∫ 1

0

∣∣∣∣ ∞∑
n=2k−1+1

∞∑
m=M

cnmψnm(t)

∣∣∣∣2dt (28)

≤
∫ 1

0

∞∑
n=2k−1+1

∞∑
m=M

|cnmψnm(t)|2dt =
∞∑

n=2k−1+1

∞∑
m=M

∫ 1

0
|cnm|2|ψnm(t)|2dt

=
∞∑

n=2k−1+1

∞∑
m=M

|cnm|2
∫ 1

0
|ψnm(t)|2dt =

∞∑
n=2k−1+1

∞∑
m=M

|cnm|2.
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From Eqs. (4) and (6), we obtain

cnm =

∫ 1

0
z(t)ψnm(t)dt =

∫ n̂+1

2k−1

n̂

2k−1

z(t)
√

2m+ 12
k−1
2 Lm(2k−1t− n̂)dt. (29)

Now, we let x = 2k−1t− n̂, then

cnm =

∫ 1

0
z(
x+ n̂

2k−1
)(

2m+ 1

2
)
1
2 2

k
2Lm(x)

1

2k−1
dx =

(
2m+ 1

2k−1

) 1
2
∫ 1

0
z(
x+ n̂

2k−1
)Lm(x)dx

=

(
1

2k+1(2m+ 1)

) 1
2
∫ 1

0
z(
x+ n̂

2k−1
)d[Lm+1(x)− Lm−1(x)]dx

=

(
1

2k+1(2m+ 1)

) 1
2
(
z(
x+ n̂

2k−1
)(Lm+1(x)− Lm−1(x))

)∣∣∣∣1
0

−
(

1

2k+1(2m+ 1)

) 1
2
∫ 1

0
z′(
x+ n̂

2k−1
)

1

2k−1
(Lm+1(x)− Lm−1(x))dx

= −
(

1

23k−1(2m+ 1)

) 1
2
∫ 1

0
z′(
x+ n̂

2k−1
)(Lm+1(x)− Lm−1(x))dx

= −
(

1

23k−1(2m+ 1)

) 1
2
∫ 1

0
z′(
x+ n̂

2k−1
)d

[
Lm+2(x)− Lm(x)

2(2m+ 3)
− Lm(x)− Lm−2(x)

2(2m− 1)

]
dx

= −
(

1

23k−1(2m+ 1)

) 1
2

z′(
x+ n̂

2k−1
)

[
Lm+2(x)− Lm(x)

2(2m+ 3)
− Lm(x)− Lm−2(x)

2(2m− 1)

]1

0

=

(
1

25k−3(2m+ 1)

) 1
2
∫ 1

0
z′′(

x+ n̂

2k−1
)

[
Lm+2(x)− Lm(x)

2(2m+ 3)
− Lm(x)− Lm−2(x)

2(2m− 1)

]
dx.

Therefore,

|cnm|2 =

∣∣∣∣( 1

25k−3(2m+ 1)

) 1
2
∫ 1

0
z′′(

x+ n̂

2k−1
)

[
Lm+2(x)− Lm(x)

2(2m+ 3)
− Lm(x)− Lm−2(x)

2(2m− 1)

]
dx

∣∣∣∣2
=

1

25k−1(2m+ 1)

∣∣∣∣ ∫ 1

0
z′′(

x+ n̂

2k−1
)[

(2m− 1)Lm+2(x)− (4m+ 2)Lm(x) + (2m+ 3)Lm−2(x)

(2m+ 3)(2m− 1)

]
dx

∣∣∣∣2
≤ 1

25k−1(2m+ 1)

∫ 1

0

∣∣∣∣z′′(x+ n̂

2k−1
)

∣∣∣∣2dx∫ 1

0

∣∣∣∣(2m− 1)Lm+2(x)− (4m+ 2)Lm(x) + (2m+ 3)Lm−2(x)

(2m+ 3)(2m− 1)

∣∣∣∣2dx
<

Q2

25k−1(2m+ 1)

∫ 1

0

(2m− 1)2L2
m+2(x) + (4m+ 2)2L2

m(x) + (2m+ 3)2L2
m−2(x)

(2m+ 3)2(2m− 1)2
dx



A computational method based on Legendre wavelets for solving DOFDEs 509

=
Q2

25k−1(2m+ 1)(2m+ 3)2(2m− 1)2[
(2m− 1)2

∫ 1

0
L2
m+2(x)dx+ (4m+ 2)2

∫ 1

0
L2
m(x)dx+ (2m+ 3)2

∫ 1

0
L2
m−2(x)dx

]
=

Q2

25k−1(2m+ 1)(2m+ 3)2(2m− 1)2

[
(2m− 1)2 1

2m+ 5

+(4m+ 2)2 1

2m+ 1
+ (2m+ 3)2 1

2m− 3

]
=

Q2

25k−1(2m+ 1)(2m+ 3)2(2m− 1)2

6(2m+ 3)2

2m− 3

=
6Q2

25k−1(2m+ 1)(2m− 1)2(2m− 3)
=

6Q2

25k−1(2m− 3)4

<
12Q2

(2n)5(2m− 3)4
=

3

8

Q2

n5(2m− 3)4
. (30)

Therefore

‖z(t)− zm̂(t)‖22 ≤
∞∑

n=2k−1+1

∞∑
m=M

|cnm|2 <
3Q2

8

∞∑
n=2k−1+1

∞∑
m=M

1

n5(2m− 3)4
. (31)

The theorem is established by taking the square roots. From above theorem, we conclude that

k,M →∞, then ‖z(t)− zm̂(t)‖2 → 0,

which completes the proof.

6 Numerical results and comparisons

In this part, we consider some numerical examples are conducted to validate the mentioned
scheme. We performed our computations using Mathematica 10.

Example 1. Consider the equation∫ 2

0

Γ(6− α)

120
D∗αt z(t)dα =

t5 − t3

ln t
, (32)

with the initial conditions z(0) = z′(0) = 0. The aforementioned problem has the following
exact solution z(t) = t5. Table 1 presents details of absolute error in z(0.5) along with those
given in Refs. [11] and [18] for comparison. Also, Figure 1 demonstrates absolute error of the
proposed scheme with k = 1,M = 6 and Ref. [18]. From Table 1 and Figure 1, we conclude that
obtained numerical results have a good accuracy. Moreover, numerical solution and the exact
solution for k = 1 and M = 5, 6 are depicted in Figure 2.

Example 2. Consider the equation∫ 2

0
Γ(4− α) sinh(α)D∗αt z(t)dα =

6t(t2 − cosh(2)− sinh(2) ln t)

(ln t)2 − 1
, (33)
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Table 1: Comparison of absolute error for k = 1 and t = 0.5 with Refs. [11, 18] (Example 1).

Ref. [11] Absolute error CPU

k = 4 6.39× 10−4 −
k = 8 1.59× 10−4 −
k = 16 3.73× 10−5 −
Ref. [18]

k = 4 6.36× 10−4 −
k = 8 1.47× 10−4 −
k = 16 1.71× 10−5 −
Present method

M = 5 1.66× 10−3 0.031
M = 6 2.84× 10−7 0.047

Figure 1: Comparison of absolute errors of (a) : present method for k = 1,M = 6 (b) : Ref. [18]
for Example 1.

with the initial conditions z(0) = z′(0) = 0. The aforementioned problem has the following exact
solution z(t) = t3. Figure 3 compares absolute errors of the mentioned scheme for k = 1,M = 6
with Ref. [33]. Table 2 lists absolute error for k = 1 and various cases of M . Also, numerical
solution and the exact solution for k = 1 and M = 4 are depicted in Figure 4.

Example 3. Consider the equation∫ 1.5

0.2
Γ(3− α)D∗αt z(t)dα = 2

t1.8 − t0.5

ln t
, (34)

with the initial conditions z(0) = z′(0) = 0. The aforementioned problem has the following exact
solution z(t) = t2. Table 3 compares scheme by [18] and the present scheme with k = 1 in z(0.9).
In Table 4, we have compared obtained absolute errors for various numbers of M . Based on
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Figure 2: Comparison of numerical solution and the exact solution with (a) : M = 5 (b) : M = 6
for Example 1.

Figure 3: The comparison of absolute errors of (a) : present method for k = 1,M = 6 (b) :
Ref. [33] for Example 2.

this table, we observe that accuracy of the mentioned scheme increases by increasing number
of LWs. Also, Figure 5 demonstrates absolute error of the proposed scheme with k = 1,M = 6
and Ref. [18].

7 Conclusion

In this work, a class of DOFDEs has been solved numerically. Firstly, the Legendre wavelets
derivative operators of distributed order fractional and integer-order has been constructed. Sec-
ondly, these operators and colocation technique has been utilized to transform the under study
problem into a system of algebraic equations. Finally, the proposed technique for four problems
have been tested to show the efficiency of the new technique.
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Table 2: The absolute error for k = 1 and different values of M (Example 2).

t M = 4 M = 5 M = 6

0.1 2.33× 10−6 1.19× 10−7 1.41× 10−8

0.2 7.93× 10−6 3.47× 10−7 2.97× 10−8

0.3 1.48× 10−5 5.45× 10−7 4.12× 10−8

0.4 2.07× 10−5 6.55× 10−7 4.88× 10−8

0.5 2.38× 10−5 6.94× 10−7 5.45× 10−8

0.6 2.19× 10−5 7.61× 10−7 5.89× 10−8

0.7 1.29× 10−5 1.03× 10−6 5.80× 10−8

0.8 5.18× 10−6 1.75× 10−6 3.91× 10−8

0.9 3.44× 10−5 3.26× 10−6 2.24× 10−8

CPU 0.001 0.016 0.032

Table 3: Comparison of relative error for k = 1, t = 0.9 with Refs. [18] (Example 3).

Ref. [18] Absolute error CPU

k = 4 5.10× 10−3 −
k = 8 1.20× 10−3 −
k = 16 1.96× 10−4 −
k = 32 6.73× 10−5 −
k = 64 1.40× 10−4 −
Present method

M = 3 2.01× 10−4 0.001
M = 4 7.88× 10−6 0.016
M = 5 2.01× 10−7 0.031
M = 6 7.53× 10−9 0.031

Table 4: The absolute error for k = 1 and different values of M (Example 3).

t M = 3 M = 4 M = 5 M = 6

0.1 2.01× 10−6 8.33× 10−8 2.14× 10−9 9.37× 10−9

0.2 8.04× 10−6 2.52× 10−7 4.76× 10−9 1.66× 10−8

0.3 1.81× 10−5 3.85× 10−7 4.56× 10−9 2.17× 10−8

0.4 3.22× 10−5 3.60× 10−7 1.46× 10−9 2.48× 10−8

0.5 5.02× 10−5 5.61× 10−8 1.46× 10−9 2.58× 10−8

0.6 7.24× 10−5 6.49× 10−7 2.14× 10−9 2.47× 10−8

0.7 9.85× 10−5 1.88× 10−6 2.17× 10−8 2.15× 10−8

0.8 1.29× 10−4 3.75× 10−6 7.00× 10−8 1.55× 10−8

0.9 1.63× 10−4 6.38× 10−6 1.63× 10−7 6.10× 10−9
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Figure 4: Comparison of numerical solution and the exact solution with k = 1,M = 4 for
Example 2.

Figure 5: The comparison of absolute errors of (a) : present method for k = 1,M = 6 (b) :
Ref. [18] for Example 3.
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