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Abstract. This paper is devoted to study the existence of solution for a class of nonlinear
differential equations with nonlocal boundary conditions involving the right Caputo and left
Riemann–Liouville fractional derivatives. Our approach is based on Darbo’s fixed point theo-
rem associated with the Hausdorff measure of noncompactness. The obtained results generalize
and extend some of the results found in the literature. Besides, the reported results concerned
in the Banach space’s sense. In the end, an example illustrates our acquired results.
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1 Introduction

Fractional calculus is an important area of mathematics due to its well-founded theoretical basis,
as well as its many applications, see for instance [26,30–34,36]. In consequence, there are many
published papers that are devoted to the existence of solutions of nonlinear fractional boundary
value problems. For details and examples, see [3,13,21] and their references. On the other hand,
the nonlocal boundary value problems have recently received considerable attention as nonlocal
condition is more appropriate than the local condition (initial and/or boundary) to describe
correctly some physics phenomenons (see for instance [11, 12, 16, 17]). More recently, fractional
differential equations involving right Caputo and left Riemann–Liouville fractional derivatives
are attracting much attention as an interesting field in fractional differential equations theory and
many results are obtained concerning the existence of solutions by the help of different methods
to see more applications about the usefulness of this new kind of problems, the reader can be
referred to [6–8, 15, 22–24, 27–29, 37] and references cited therein. From these points of view, it
is imperative to study differential equation with left and right fractional derivatives. Moreover,
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it has been noticed that most of the above-mentioned work on the topic is based on techniques
of nonlinear analysis such as Banach fixed point theorem, Schauder’s fixed point theorem, and
Leray-Schauder nonlinear alternative, etc. But if compactness and Lipschitz condition are not
satisfied these results cannot be used. The measure of noncompactness comes handy in such
situations. For instance, the celebrated Darbo fixed point theorem and Mönch fixed point
theorem are used by several authors with the end goal to establish existence results for nonlinear
integral equations (see [1, 2, 4, 5, 14,20] and references therein).

In [23] Guezane–Lakoud et al. investigated the existence of solutions for boundary value
problems involving both left Riemann–Liouville and right Caputo-type fractional derivatives of
the form {

CDα1−RLDβ0+u(t) = f(t, u(t)), t ∈ J := [0, 1],

u(0) = u′(0) = u(1) = 0,

where CDβ1− and RLDα0+ denote the right Caputo fractional derivative of order α ∈ (0, 1) and the
left Riemann–Liouville fractional derivative of order β ∈ (1, 2) respectively, and f : [0, 1]×R −→
R is a given function. By using Krasnoselskii’s fixed point theorem, the authors obtained the
existence of solutions.

Very recently, in [6], the authors considered the following nonlocal boundary value problem
involving both Caputo and Riemann–Liouville fractional derivatives{

CDα1−RLDβ0+u(t) = f(t, u(t)), t ∈ J := [0, 1],

u(0) = u′(0) = 0, u(1) = δu(η), 0 < η < 1,

where CDβ1− and RLDα0+ denote the right Caputo fractional derivative of order α ∈ (1, 2) and the
left Riemann–Liouville fractional derivative of order β ∈ (0, 1) respectively, and f : [0, 1]×R −→
R is a continuous function. They obtained the existence and uniqueness of solutions by employing
some fixed point theorems.

Inspired by the work of the above papers, the present paper aims to establish the existence
of solutions for nonlocal boundary value problem involving both Caputo and Riemann–Liouville
fractional derivatives in Banach spaces. More precisely, we will consider the following problem{

CDαb−RLDβa+u(t) = f(t, u(t)), t ∈ J := [a, b],

u(a) = u′(a) = 0, u(b) = δu(η), a < η < b,
(1)

where CDβb− and RLDαa+ denote the right Caputo fractional derivative of order α ∈ (0, 1) and the
left Riemann–Liouville fractional derivative of order β ∈ (1, 2) respectively, and f : [a, b]×E −→
E is a given function satisfying some assumptions that will be specified later, E is a Banach
space with norm ‖ · ‖, and δ is a parameter.

To the best of our knowledge, this is the first paper dealing with a nonlocal three-point
boundary conditions involving right Caputo and left Riemann–Liouville differential equations of
fractional order in Banach spaces E. As in Banach space (in general in any infinite-dimensional
linear space) a closed and bounded set is not necessarily compact set, mere continuity of the
function f doesn’t guarantee the existence of a solution of differential equations. The argu-
ments are based on Darbo’s fixed point theorem combined with the technique of measures of
noncompactness to establish the existence of a solution for BVP (1).
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The structure of this paper is as follows. The next section provides the definitions and
preliminary results that we will need to prove our main results. Then, we present the existence
results in Section 3. In Section 4, we give an example to illustrate the obtained results. The
last section concludes this paper.

2 Preliminaries

We start this section by introducing some necessary definitions and basic results required for
further developments.

Let C(J,E) be the Banach space of all continuous functions u from J into E with the
supremum (uniform) norm

‖u‖∞ = sup{‖u(t)‖, t ∈ J}.

By L1(J) we denote the space of Bochner-integrable functions u : J → E, with the norm

‖u‖1 =

∫ T

0
‖u(t)‖dt.

Next, we define the Hausdorff measure of noncompactness and give some of its important prop-
erties.

Definition 1. [10] Let E be a Banach space and B a bounded subsets of E. Then the Hausdorff
measure of non-compactness of B is defined by

χ(B) = inf
{
ε > 0 : B has a finite cover by closed balls of radius ε

}
.

To discuss the problem in this paper, we need the following lemmas.

Lemma 1. Let A,B ⊂ E be bounded. Then the Hausdorff measure of non-compactness has the
following properties. For more details and the proof of these properties see [10].

1. A ⊂ B =⇒ χ(A) ≤ χ(B);

2. χ(A) = 0⇐⇒ A is relatively compact;

3. χ(A ∪ B) = max{χ(A), χ(B)};
4. χ(A) = χ(A) = χ(conv(A)), where A and convA represent the closure and the convex hull

of A , respectively;

5. χ(A+ B) ≤ χ(A) + χ(B), where A+ B = {x+ y : x ∈ A, y ∈ B};
6. χ(λA) ≤ |λ|χ(A), for any λ ∈ R;

7. If the map Q : D(Q) ⊆ E → Z is Lipschitz continuous with constant k, then χZ(QB) ≤
kχ(B) for any bounded subset B ⊆ D(Q), where Z is a Banach space. and χZ(.) is the
Hausdorff measure of noncompactness associated with Z.

Lemma 2. [9] (Generalized Cantor’s intersection) If {Wn}∞n=1 is a decreasing sequence of
bounded and closed nonempty subsets of E and lim

n→∞
χ(Wn) = 0, then

⋂∞
n=1Wn is nonempty

and compact in E
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Lemma 3. [10] If W ⊆ C(J,E) is bounded and equicontinuous, then χ(W(t)) is continuous
on J , and χ(W) = sup

t∈J
χ(W(t)).

We call B ⊂ L1(J,E) uniformly integrable if there exists η ∈ L1(J,R+) such that
‖u(s)‖ ≤ η(s), for all u ∈ B and a.e. s ∈ J .

Lemma 4. [25] If {un}∞n=1 ⊂ L1(J,E) is uniformly integrable, then χ({un}∞n=1) is measurable,
and

χ

({∫ t

a
un(s)ds

}∞
n=1

)
≤ 2

∫ t

a
χ({un(s)}∞n=1)ds.

Lemma 5. [18] If W is bounded, then for each ε, there is a sequence {un}∞n=1 ⊂ W , such that

χ(W) ≤ 2χ({un}∞n=1) + ε.

Definition 2. [38] A function f : [a, b]×E −→ E is said to satisfy the Carathéodory conditions,
if the following hold

• f(t, u) is measurable with respect to t for u ∈ E,

• f(t, u) is continuous with respect to u ∈ E for t ∈ J .

Definition 3. [10] The mapping N : Ω ⊂ E −→ E is said to be a χ-contraction, if there exists
a positive constant k < 1 such that

χ(N (W)) ≤ kχ(W),

for every bounded subset W of Ω.

A useful fixed point result for our goals is the following, proved in [10,19].

Theorem 1. (Darbo and Sadovskii) Let Ω be a nonempty, bounded, closed and convex subset of
a Banach space E and let N : Ω→ Ω be a continuous operator. If N is a χ-contraction. Then
N has at least one fixed point.

Let us recall some preliminary concepts of fractional calculus related to our work

Definition 4. [30] The fractional left and right Riemann–Liouville integrals of order α are
defined as

RLIαa+u(t) =
1

Γ(α)

∫ t

a
(t− s)α−1u(s) ds,

RLIαb−u(t) =
1

Γ(α)

∫ b

t
(s− t)α−1u(s) ds,

where Γ(·) is the (Euler’s) Gamma function

Γ(α) =

∫ +∞

0
e−ttα−1dt, α > 0.
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Definition 5. The left Riemann-Liouville fractional derivative and the right Caputo fractional
derivative of order α > 0, of a function u ∈ ACn([a, b]) are, respectively,

RLDαa+u(t) =
dn

dtn

(
RLIn−αa+ u

)
(t),

CDαb−u(t) = (−1)n RLIn−αb− u(n)(t),

where u(n)(t) = dnu(t)
dtn .

Lemma 6. [30] If u ∈ ACn([a, b]), then

RLIαa+RLDαa+u(t) = u(t)−
n−1∑
j=0

u(j)(a)

j!
(t− a)j ,

and

RLIαb−CDαb−u(t) = u(t)−
n−1∑
j=0

(−1)ju(j)(b)

j!
(b− t)j .

Remark 1. Note that for an abstract function u : J −→ E, the integrals which appear in the
previous definitions are taken in Bochner’s sense (see, for instance, [35]).

3 Main results

Let us recall the definition and lemma of a solution for problem (1). First of all, we define what
we mean by a solution for the boundary value problem (1).

Definition 6. A function u ∈ C(J,E) is said to be a solution of Eq. (1) if u satisfies the equation
CDαb−RLDβa+u(t) = f(t, u(t)), a.e. on J , and the condition u(0) = u′(0) = 0, u(b) = δu(η).

For the existence of solutions for the problem (1) we need the following lemma.

Lemma 7. Let h ∈ C(J,E) and (bβ − δηβ) 6= 0. Then the solution of the linear fractional
differential equation supplemented with nonlocal boundary conditions{

CDαb−RLDβa+u(t) = f(t, u(t)), t ∈ J,
u(a) = u′(a) = 0, u(b) = δu(η).

(2)

is equivalent to the fractional integral equation given by

u(t) = RLIβa+RLIαb−h(t) +
tβ

bβ − δηβ
[
δRLIβa+RLIαb−h(η)− RLIβa+RLIαb−h(b)

]
=

1

Γ(α)Γ(β)

∫ t

a

∫ b

s
(t− s)β−1(τ − s)α−1h(τ)dτds

+
δtβ

(bβ − δηβ)Γ(α)Γ(β)

∫ η

a

∫ b

s
(η − s)β−1(τ − s)α−1h(τ)dτds

− tβ

(bβ − δηβ)Γ(α)Γ(β)

∫ b

a

∫ b

s
(b− s)β−1(τ − s)α−1h(τ)dτds. (3)



456 A. Boutiara

Proof. We first apply the right fractional integrals RLIαb− to the first equality of (2) and then
the left fractional integrals RLIαa+ to the resulting equations, and using the properties of Caputo
and Riemann–Liouville fractional derivatives, we get

u(t) = RLIβa+RLIαb−h(t) +
c0t

β

Γ(β + 1)
+ c1(t− a)β−1 + c2(t− a)β−2. (4)

Using the conditions u(a) = 0, u′(a) = 0, in (4) yields c1 = 0, c2 = 0. In consequence, the
equation (4) reduce to the form:

u(t) = RLIβa+RLIαb−h(t) +
c1t

β

Γ(β + 1)
. (5)

By the boundary condition u(b) = δu(η), we find that

c1 =
Γ(β + 1)

bβ − δηβ
[
δRLIβa+RLIαb−h(η)− RLIβa+RLIαb−h(b)

]
,

which, on substituting in (5), leads to the solution (3). The converse follows by direct compu-
tation. The proof is completed.

In the following, for computational convenience we put

Mψ =
‖ψ‖ (b− a)α

Γ(α+ 1)Γ(β + 1)

[
(b− a)β +

|δ|bβ (η − a)β

|bβ − δηβ|
+
bβ (b− a)β

|bβ − δηβ|

]
, (6)

and

Lψ =
‖ψ‖ (b− a)α

Γ(α+ 1)Γ(β)

[
(b− a)β−1 +

|δ|bβ−1 (η − a)β

|bβ − δηβ|
+
bβ−1 (b− a)β

|bβ − δηβ|

]
. (7)

Now, we shall present our main result concerning the existence of solutions of problem (1). Let
us introduce the following hypotheses

1. (H1) the function f : [a, b]× E −→ E satisfy Carathéodory conditions;

2. (H2) There exist function ψ ∈ L∞(J,R+) such that

‖f(t, u(t))‖ ≤ ψ(t)(1 + ‖u‖), for all u ∈ C(J,E);

3. (H3) For each bounded set W ⊂ E, and each t ∈ J , the following inequality holds

χ(g(t,W)) ≤ ψ(t)χ(W).

Now, we shall prove the following theorem concerning the existence of solutions of problem (1)

Theorem 2. Assume that the hypotheses (H1)–(H3) are satisfied. If

Mψ < 1, (8)

then the problem (1) has at least one solution defined on J .
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Proof. Consider the operator N : C(J,E) −→ C(J,E) defined by:

Nu(t) =
1

Γ(α)Γ(β)

∫ t

a

∫ b

s
(t− s)β−1(τ − s)α−1f(τ, u(τ))dτds

+
δtβ

(bβ − δηβ)Γ(α)Γ(β)

∫ η

a

∫ b

s
(η − s)β−1(τ − s)α−1f(τ, u(τ))dτds

− tβ

(bβ − δηβ)Γ(α)Γ(β)

∫ b

a

∫ b

s
(b− s)β−1(τ − s)α−1f(τ, u(τ))dτds. (9)

It is obvious that N is well defined due to (H1) and (H2). Then, fractional integral equation
(3) can be written as the following operator equation

u = Nu. (10)

Thus, the existence of a solution for Eq. (1) is equivalent to the existence of a fixed point for
operator N which satisfies operator equation (10). Define a bounded closed convex set

BR = {w ∈ C(J,E) : ‖w‖∞ ≤ R} ,

with R > 0, such that

R ≥
Mψ

1−Mψ
.

In order to satisfy the hypotheses of the Darbo fixed point theorem, we split the proof into four
steps.
Step 1: The operator N maps the set BR into itself. By the assumption (H2), we have

‖Nu(t)‖ ≤ 1

Γ(α)Γ(β)

∫ t

a

∫ b

s
(t− s)β−1(τ − s)α−1‖f(τ, u(τ))‖dτds

+
|δ|tβ

|bβ − δηβ|Γ(α)Γ(β)

∫ η

a

∫ b

s
(η − s)β−1(τ − s)α−1‖f(τ, u(τ))‖dτds

+
tβ

|bβ − δηβ|Γ(α)Γ(β)

∫ b

a

∫ b

s
(b− s)β−1(τ − s)α−1‖f(τ, u(τ))‖dτds

≤ 1

Γ(α)Γ(β)

∫ t

a

∫ b

s
(t− s)β−1(τ − s)α−1ψ(τ)(1 + ‖u(τ)‖)dτds

+
|δ|tβ

|bβ − δηβ|Γ(α)Γ(β)

∫ η

a

∫ b

s
(η − s)β−1(τ − s)α−1ψ(τ)(1 + ‖u(τ)‖)dτds

+
tβ

|bβ − δηβ|Γ(α)Γ(β)

∫ b

a

∫ b

s
(b− s)β−1(τ − s)α−1ψ(τ)(1 + ‖u(τ)‖)dτds
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≤ ψ‖(1 + ‖u‖)
Γ(α)Γ(β)

∫ t

a

∫ b

s
(t− s)β−1(τ − s)α−1dτds

+
|δ|tβψ‖(1 + ‖u‖)
|bβ − δηβ|Γ(α)Γ(β)

∫ η

a

∫ b

s
(η − s)β−1(τ − s)α−1dτds

+
tβψ‖(1 + ‖u‖)

|bβ − δηβ|Γ(α)Γ(β)

∫ b

a

∫ b

s
(b− s)β−1(τ − s)α−1dτds.

Also note that

1

Γ(α)Γ(β)

∫ t

a

∫ b

s
(t− s)β−1(τ − s)α−1dτds ≤ (b− a)α (b− a)β

Γ(α+ 1)Γ(β + 1)
,

where we have used the fact that (b− s)α ≤ (b− a)α for 0 < α ≤ 1. Using the above arguments,
we have

‖Nu(t)‖ ≤ ‖ψ‖(1 + ‖u‖) (b− a)α

Γ(α+ 1)Γ(β + 1)

[
(b− a)β +

|δ|bβ (η − a)β

|bβ − δηβ|
+
bβ (b− a)β

|bβ − δηβ|

]

≤ ‖ψ‖(1 +R) (b− a)α

Γ(α+ 1)Γ(β + 1)

[
(b− a)β +

|δ|bβ (η − a)β

|bβ − δηβ|
+
bβ (b− a)β

|bβ − δηβ|

]
=Mψ(1 +R) ≤ R.

Thus ‖Nu‖ ≤ R. This proves that N transforms the ball BR into itself. Furthermore for any
u ∈ BR and t ∈ J , we have

‖(Nu)′(t)‖ ≤ 1

Γ(α)Γ(β − 1)

∫ t

a

∫ b

s
(t− s)β−2(τ − s)α−1ψ(τ)(1 + ‖u(τ)‖)dτds

+
|δ|βtβ−1

|bβ − δηβ|Γ(α)Γ(β)

∫ η

a

∫ b

s
(η − s)β−1(τ − s)α−1ψ(τ)(1 + ‖u(τ)‖)dτds

+
βtβ−1

|bβ − δηβ|Γ(α)Γ(β)

∫ b

a

∫ b

s
(b− s)β−1(τ − s)α−1ψ(τ)(1 + ‖u(τ)‖)dτds.

Some computations give

‖(Nu)′(t)‖ ≤ ‖ψ‖(1 +R) (b− a)α

Γ(α+ 1)Γ(β)

[
(b− a)β−1 +

|δ|bβ−1 (η − a)β

|bβ − δηβ|
+
bβ−1 (b− a)β

|bβ − δηβ|

]
:= Lψ(1 +R).

Step 2: The operator N is continuous. Suppose that {un} is a sequence such that un → u in
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BR as n→∞. Since f satisfies (H1), for each t ∈ J , we get

‖Nun(t)−Nu(t)‖

≤ 1

Γ(α)Γ(β)

∫ t

a

∫ b

s
(t− s)β−1(τ − s)α−1‖f(τ, un(τ))− f(τ, u(τ))‖dτds

+
|δ|tβ

|bβ − δηβ|Γ(α)Γ(β)

∫ η

a

∫ b

s
(η − s)β−1(τ − s)α−1‖f(τ, un(τ))− f(τ, u(τ))‖dτds

+
tβ

|bβ − δηβ|Γ(α)Γ(β)

∫ b

a

∫ b

s
(b− s)β−1(τ − s)α−1‖f(τ, un(τ))− f(τ, u(τ))‖dτds

≤ (b− a)α

Γ(α+ 1)Γ(β + 1)

[
(b− a)β +

|δ|bβ (η − a)β

|bβ − δηβ|
+
bβ (b− a)β

|bβ − δηβ|

]
‖f(·, un(·))− f(·, u(·))‖.

By using the Lebesgue dominated convergence theorem, we know that

‖Nun(t)−Nu(t)‖ → 0, as n→ +∞,

for any t ∈ J . Therefore, we get that

‖Nun −Nu‖ → 0, as n→ +∞,

which implies the continuity of the operator N .
Step 3: The operator N is equicontinuous. For any a < t1 < t2 < b and u ∈ BR, we get

‖N (u)(t2)−N (u)(t1)‖ ≤
∫ t2

t1

‖(Nu)′(s)‖ds ≤ (1 +R)Lψ|t2 − t1|.

where Lψ is given by (7). As t2 → t1, the right-hand side of the above inequality tends to
zero independently of u ∈ BR. Hence, we conclude that N (BR) ⊆ C(J,E) is bounded and
equicontinuous.
Step 4: Our aim in this step is to show that N is χ-contraction on BR. For every bounded
subset W ⊂ BR and ε > 0 using Lemma 5 and the properties of χ, there exist sequences
{uk}∞k=1 ⊂ W such that

χ (NW(t)) ≤ 2χ

{
1

Γ(α)Γ(β)

∫ t

a

∫ b

s
(t− s)β−1(τ − s)α−1f (τ, {uk(τ)}∞k=1) dτds

+
δtβ

(bβ − δηβ)Γ(α)Γ(β)

∫ η

a

∫ b

s
(η − s)β−1(τ − s)α−1f (τ, {uk(τ)}∞k=1) dτds

− tβ

(bβ − δηβ)Γ(α)Γ(β)

∫ b

a

∫ b

s
(b− s)β−1(τ − s)α−1f (τ, {uk(τ)}∞k=1) dτds

}
+ ε.
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Next, by Lemma 4 and the properties of χ and (H3) we have

(NW(t)) ≤ 4

{
1

Γ(α)Γ(β)

∫ t

a

∫ b

s
(t− s)β−1(τ − s)α−1χ (f (τ, {uk(τ)}∞k=1)) dτds

+
|δ|tβ

|bβ − δηβ|Γ(α)Γ(β)

∫ η

a

∫ b

s
(η − s)β−1(τ − s)α−1χ (f (τ, {uk(τ)}∞k=1)) dτds

+
tβ

|bβ − δηβ|Γ(α)Γ(β)

∫ b

a

∫ b

s
(b− s)β−1(τ − s)α−1χ (f (τ, {uk(τ)}∞k=1)) dτds

}
+ ε

≤ 4

{
1

Γ(α)Γ(β)

∫ t

a

∫ b

s
(t− s)β−1(τ − s)α−1ψ(τ)χ ({uk(τ)}∞k=1) dτds

+
|δ|tβ

|bβ − δηβ|Γ(α)Γ(β)

∫ η

a

∫ b

s
(η − s)β−1(τ − s)α−1ψ(τ)χ ({uk(τ)}∞k=1) dτds

+
tβ

|bβ − δηβ|Γ(α)Γ(β)

∫ b

a

∫ b

s
(b− s)β−1(τ − s)α−1ψ(τ)χ ({uk(τ)}∞k=1) dτds

}
+ ε

≤ 4Mψχ(B) + ε.

As the last inequality is true, for every ε > 0, we infer

χ(NW) = sup
t∈J

χ(NW(t)) ≤ 4Mψχ(B).

Using the condition (8), we claim that N is a χ-contraction on BR. By Theorem 1, there is a
fixed point u of N on BR, which is a solution of (1). This completes the proof.

4 An example

In this section we give an example to illustrate the usefulness of our main result. Let

E = c0 = {u = (u1, u2, . . . , un, . . . ) : un → 0 (n→∞)} ,

be the Banach space of real sequences converging to zero, endowed its usual norm ‖u‖∞ =
supn≥1 |un|.

Example 1. Consider the following boundary value problem of a fractional differential posed
in c0: CD

1
2
1
2

−
RLD

3
2

0+
u(t) = f(t, u(t)), t ∈ J, J :=

[
0, 12
]
,

u(0) = u′(0) = 0, u
(
1
2

)
= 1

5u
(
1
4

)
.

(11)

Note that, this problem is a particular case of BVP (1), where

α =
1

2
, β =

3

2
, a = 0, b =

1

2
, η =

1

2
, δ =

1

5
,

and f : J × c0 −→ c0 given by

f(t, u) =

{
1

(t2 + 2)2

(
1

n2
+ ln(1 + |un|)

)}
n≥1

, for t ∈ J, u = {un}n≥1 ∈ c0.
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It is clear that condition (H1) hold, and as

‖f(t, u)‖ =

∥∥∥∥ 1

(t2 + 2)2

(
1

n2
+ ln(1 + |un|)

)∥∥∥∥ ≤ 1

(t2 + 2)2
(1 + ‖u‖) = ψ(t)(1 + ‖u‖).

Therefore, assumption (H2) of the Theorem 2 is satisfied with ψ(t) = 1
(t2+2)2

, t ∈ J . On the

other hand, for any bounded set W ⊂ c0, we have

χ(f(t,W)) ≤ 1

(t2 + 2)2
χ(W), for each t ∈ J.

Hence (H3) is satisfied. We shall check that condition (8) is satisfied. Indeed 4Mψ = 0.7314 < 1,
and (1 +R)Mψ ≤ R, thus

R ≥
Mψ

1−Mψ
= 2.7229,

Then R can be chosen as R = 3 ≥ 2.7229. Consequently, Theorem 2 implies that problem (11)
has at least one solution u ∈ C(J, c0).

5 Conclusions

We have proved the existence of solutions for certain classes of nonlinear differential equations
involving the right Caputo and left Riemann–Liouville fractional derivatives with nonlocal condi-
tions in Banach spaces. The problem is issued by applying Darbo’s fixed point theorem combined
with the technique of Hausdorff measure of noncompactness. We also provide an example to
make our results clear.
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