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Abstract.Natural Volterra Runge–Kutta methods and general linear methods are two large
family of the methods which have recently attracted more attention in the numerical solution
of Volterra integral equations. The purpose of the paper is the presentation of some recent
advances in these methods. Also, implementation issues for these methods will be discussed.
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1 Introduction

The modeling of certain physical phenomena in which a quantity varies in time and simulta-
neously depends on its past values can usually be modeled by a system of Volterra integral
equations (VIEs). A classical system of VIEs of the second kind is therefore often assumed to
be

y(t) = g(t) +

∫ t

t0

K(t, s, y(s)) ds, t ∈ I := [t0, T ]. (1)

Here the forcing function g : I → Rm and the kernel K : ∆ × Rm → Rm with ∆ := {(t, s) :
t0 ≤ s ≤ t ≤ T} are assumed to be sufficiently smooth so that system (1) has a unique solution
y [18,37]. The unfortunate fact is that there is no general rule to solve analytically a given VIE
and therefore one is forced to employ a suitable numerical method giving an approximation of the
exact solution. Over the last few decades, numerous numerical methods have been introduced for
the numerical solution of (1). Although, the convergence of the global or spectral methods (see,
for instance, [13]), may be spectral, they are not widely used. Their main drawback is that they
treat Volterra equations as the Fredholm ones; therefore the value of T must be determined in
advance; moreover, to obtain the approximate solution, one needs to solve a large dense system
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of (nonlinear) equations which becomes very costly, in particular for the large values of m. In
contrast, discretization methods for the numerical solution of VIEs (1), such as , do not have
such drawbacks and usually approximate the solution only at a finite number of points tn of the
t-variable.

Numerous numerical methods within different classes of the methods have been already
introduced to approximate the solution of VIEs together with analyzing their properties: a
discussion on the theory and the application of Runge–Kutta type methods [18]; an investigation
of the convergence of some classes of Runge–Kutta methods [31,32]; developing general structure
of order conditions for Volterra–Runge–Kutta methods [17]; analyzing the stability properties
of Runge–Kutta type methods [30, 38]; collocation methods [24–26]; a very general class of
Runge–Kutta methods [23]; and general linear methods (GLMs) [2, 6, 33]. Furthermore, some
reliable and efficient variable-stepsize (VS) codes for the numerical solution of VIEs have been
developed based on: predictor-corrector schemes [36]; one-step method of collocation type [16];
embedded pair of Runge–Kutta methods [32]; and two-step continuous methods [22]; direct
quadrature methods based on the linear barycentric rational quadrature rule [3] (references are
made to [9, 14, 15] for discussion of barycentric interpolation and its applications). Moreover,
the author of the present paper, together with his co-authors, developed two more efficient VS
codes for VIEs based on natural Volterra Runge–Kutta (VRK) method [8], and GLMs [5] which
we intend to discuss about them in the present paper.

The rest of the paper is organized along the following lines. In Section 2, representation of
natural VRK methods in a VS environment is given and implementation strategies utilized in
Matlab code nvrk4.m which is based on natural VRK method of order four, is discussed. In
Section 3, implementation of Nordsieck GLMs in a VS environment using Nordsieck technique
is surveyed and the Matlab code vglm4.m which is based on an unconditionally zero-stable
GLM of order four is discussed. Some numerical experiments confirming the efficiency of the
codes nvrk4.m and vglm4.m are presented in Section 4. Finally, some concluding remarks are
given in Section 5.

2 The VS code based on natural VRK method of order four

Natural VRK methods for the numerical solution of VIEs (1) were first introduced in [11] and
further investigated in [12,23]. The VS formulation of ν-stage natural VRK methods of order p
on nonuniform grid

t0 < t1 < · · · < tN , tN ≥ T,

with the stepsizes hn = tn+1 − tn, is defined by [8]

Y
[n]
i = hn

µ∑
j=1

αijK
(
tn + dijhn, tn + eijhn,

ν∑
l=1

βijlY
[n]
l

)
+ F̃n(tn + cihn), i = 1, 2, . . . , ν,

yn+1 =
ν∑
j=1

wjY
[n]
j ,

(2)
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for n = 0, 1, . . . , N − 1, with

F̃n(t) = g(t) +
n∑
κ=1

hκ−1

ν∑
j=1

vjK
(
t, tκ−1 + ξjhκ−1, u(tκ−1 + ξjhκ−1)

)
. (3)

Here, µ is a fixed integer, F̃n(t) is an approximation of order at least p to the tail

Fn(t) = g(t) +

∫ tn

t0

K(t, s, y(s)) ds, (4)

and u is a natural continuous extensions of the numerical solution by the interpolation formula
of degree d ≤ p

u(tn + θhn) =
ν∑
j=1

wj(θ)Y
[n]
j , n = 0, 1, . . . , N − 1, θ ∈ [0, 1],

where wj(θ) are polynomials of degree d with bp/2c ≤ d ≤ min{ν − 1, p}.
The importance of the paper [23] is that the first examples of VRK methods of orders p and

stage order q = p with p = 3 and p = 4 have been constructed in this paper which are A– and
V0–stable. We recall that the VRK method is said to be A–stable if{

hλ ∈ C : real(hλ) ≤ 0, imag(hλ) ≤ 0
}
⊆
{
hλ ∈ C : yn(hλ)→ 0 as n→ 0

}
,

in which
{
yn
}∞
n=0

=
{
yn(hλ)

}∞
n=0

is the numerical solution obtained by application of the VRK
method with the fixed stepsize h to the basic test equation

y(t) = 1 + λ

∫ t

0
y(s) ds, t ≥ 0, λ ∈ C.

Also, the VRK method is said to be V0–stable if{
(hλ, h2η) ∈ R2 : hλ < 0, h2η < 0

}
⊆
{

(hλ, h2η) ∈ R2 : ŷn(hλ, h2η)→ 0 as n→ 0
}
,

in which
{
ŷn
}∞
n=0

=
{
yn(hλ, h2η)

}∞
n=0

is the numerical solution obtained by application of the
VRK method with the fixed stepsize h to the convolution test equation

y(t) = 1 +

∫ t

0
(λ+ η(t− s)) y(s) ds, t ≥ 0, λ, η ∈ R.

In [8], the author of the present paper together with G. Hojjati, Z. Jackiewicz, H. Mahdi,
have developed an efficient Matlab code, nvrk4.m, based on A– and V0–stable natural VRK
method of order and stage four constructed in [23]. In this section, we focus on this code and
its implementation issues:
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– Reducing the computational cost: At first, it should be noted that the main computa-
tional cost of the code is concerned to that of the lag term F̃n(t). An elegant idea to
compute an approximation to the tail Fn(t) (4) has been introduced in [8] which reduces
the computational cost of the code by more than %80. In this way, the tail is approximated
by

F̃n(t) = g(t) +
n(6)∑
κ=1

4∑
j=1

v
(6)
κj K

(
t, t6(κ−1)+2(j−1), u(t6(κ−1)+2(j−1))

)
+

n(3)∑
κ=1

4∑
j=1

v
(3)

n(6)j
K
(
t, t6n(6)+j−1, u(t6n(6)+j−1)

)
+

n−∑̀
κ=1

h`+κ−1

ν∑
j=1

vjK
(
t, t`+κ−1 + ξjh`+κ−1, u(t`+κ−1 + ξjh`+κ−1)

)
,

(5)

where ` := 6n(6) + 3n(3). Here, the quadrature weights v
(3)

n(6)j
and v

(6)
κj which correspond

to quadrature rules of order greater or equal to p = 4, are complicated expressions in
terms of h6n(6) , h6n(6)+1, h6n(6)+2 and hr, hr+1, hr+2, hr+3, hr+4, hr+5, with r = 6(κ− 1),

respectively. The quadrature order conditions for the weights v
(3)

n(6)j
and v

(6)
κj are given by

4∑
j=1

v
(3)

n(6)j
=

2∑
i=0

h6n(6)+i,

4∑
j=2

v
(3)

n(6)j

(j−2∑
i=0

h6n(6)+i

)k−1
=

1

k

( 2∑
i=0

h6n(6)+i

)k
, k = 2, 3, 4,

(6)

and 

4∑
j=1

v
(6)
κj =

5∑
i=0

hr+i,

4∑
j=2

v
(6)
κj

(2j−3∑
i=0

hr+i

)k−1
=

1

k

( 5∑
i=0

hr+i

)k
, k = 2, 3, 4,

(7)

respectively.

– Initial stepsize: Automatic selection of initial stepsize is important to produce a reliable
and effective code and may reduce the computational cost of the code. The utilized initial
stepsize in the code nvrk4.m is as

h0 = min
{

0.01(T − t0), tol1/5
/∥∥K(t0, t0, g(t0))

∥∥},
with tol as a given tolerance. This strategy for the selection of h0 is inspired by the idea
from Gladwell et al. [27].
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– Local error estimation: Local error of the method in the point tn+1 is defined by

LEn+1 =
∣∣∣∫ tn+1

tn

K(tn+1, s, yn(s)) ds− hn
µ∑
j=1

ανjK
(
tn + dνjhn, tn + eνjhn,

ν∑
l=1

βνjlY
[n]
l

)∣∣∣,
with

yn(t) = g(t) + F̃n(t) +

∫ t

tn

K(t, s, yn(s)) ds, t ∈ [tn, tn+1].

The local error LEn+1 is estimated as

est(tn+1) :=
∣∣∣hn 5∑

j=1

vjK
(
tn+1, tn + ξjhn, u(tn + ξjhn)

)
− hn

µ∑
j=1

ανjK
(
tn + dνjhn, tn + eνjhn,

ν∑
l=1

βνjlY
[n]
l

)∣∣∣,
in which the quadrature weights vj are the weights for a five order quadrature rule and
are given by

5∑
j=1

vj ξ
k−1
j =

1

k
, k = 1, 2, . . . , 5.

The value of ξj , j = 1, 2, . . . , 5, has been chosen as (j − 1)/4.

– Stepsize changing strategy: the utilized stepsize controller in the code nvrk4.m is as follows:
the current step will be accepted if errn+1 := ‖est(tn+1)‖ ≤ ρ‖sc‖, and then the new
stepsize is computed by the formula

hn = hn−1 ·min{facmax, ropt},

with ropt given by

ropt =
(fac · ‖sc‖

errn

)1/(p+1)
,

for n = 1 and

ropt =
(fac · ‖sc‖

errn

)kI(fac · ‖sc‖
errn−1

)kP
,

for n > 1 which was suggested by Gustafsson et al. [29] (see also [19, 28]). The values for
the parameters kI and kp have been chosen as 0.7/(p+ 1) and −0.4/(p+ 1), respectively.
Also, the components of the m-dimensional vector sc is defined by

sci = Atoli + max
{
|(yn−1)i, (yn)i|

}
Rtoli, i = 1, 2, . . . ,m,

where Atoli and Rtoli are absolute and relative error tolerances corresponding to the ith
component of the solution yi(t). Furthermore, the current step is rejected if errn+1 > ρ‖sc‖
and then the computations are repeated with a new stepsize h̃n given by

h̃n = hn ·min{facmin, r̃opt},
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with r̃opt as

r̃opt =
(fac · ‖sc‖

errn

)1/(p+1)
.

The values for the parameters has been considered as ρ = 1.2, facmax = 2, facmin = 0.5,
and fac = 0.9.

3 The VS code based on GLM of order four

General linear methods for ODEs, as a comprehensive extension of these traditional methods,
were introduced by Butcher [20] (see also [19,34]). This large family of the methods opened up
the possibility of obtaining new methods which are neither traditional methods nor slight varia-
tions of them. The efficient GLM-based VS codes dim18.m [21], dim13s.m [35], and irks14.m [10]
which are also variable order, have been introduced for nonstiff and stiff ODEs. Moreover, the
more reliable VS code SGLM4.m [4] has been developed for stiff ODEs which is based on second
derivative GLMs as an extension of GLMs (see [1, 7]).

GLMs for VIEs were first introduced by Izzo et al. [33] and investigated more by Abdi et al.
in [2,6]. In [33], Nordsieck GLMs of orders p = 1, 2 and stage order q = p has been constructed
in which the input and output vectors of the methods approximate the Nordsieck vector of
order p. By investigating GLMs in general form, rather than Nordsieck form, in [6], methods of
order p and stage order q = p up to four have been constructed; in the constructed methods,
methods of orders one and two were are A– and V0(α)–stable while the stability regions of the
methods of orders three and four with respect to both the basic and convolution test equations
are bounded which obtained by setting arbitrary values for free parameters in the coefficents
of the methods. Therefore, Abdi in [2] constructed GLMs of orders p = 3, 4 and stage order
q = p with a large region of absolute stability by minimizing the objective function for the
negative area of the region of absolute stability of the method. The VS mode of these methods
by using the Nordsieck technique has been investigated in [5] which we focus on it in this section:
Consider a nonuniform grid

t0 < t1 < · · · < tN , tN ≥ T,

with the stepsizes hn = tn − tn−1, n = 1, 2, . . . , N . Assume that the input and output vectors
y[n−1] and y[n] of the method respectively approximate the Nordsieck vectors

z(tn−1, hn−1) :=


y(tn−1)

hn−1y
′(tn−1)

...

hpn−1y
(p)(tn−1)

 , z(tn, hn) :=


y(tn)

hny
′(tn)

...

hpny(p)(tn)

 .

Defining tn−1,c := [tn−1,1 tn−1,2 · · · tn−1,s]
T with tn−1,j = tn−1 + cjhn, j = 1, 2, . . . , s, and
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the vectors Y [n], F
[n]
h (tn−1,c), and Φ

[n]
h (tn−1,c) as

Y [n] :=


Y

[n]
1

Y
[n]
2
...

Y
[n]
s

 , F
[n]
hn

(tn−1,c) :=


F

[n]
hn

(tn−1,1)

F
[n]
hn

(tn−1,2)

...

F
[n]
hn

(tn−1,s)

 , Φ
[n]
hn

(tn−1,c) :=


Φ
[n]
hn

(tn−1,1)

Φ
[n]
hn

(tn−1,2)

...

Φ
[n]
hn

(tn−1,s)

 ,

with

F
[n]
hn

(tn−1,j) = g(tn−1,j) +
n−1∑
ν=1

hν

s∑
`=1

b`K(tn−1,j , tν−1,`, Y
[ν]
` ), (8)

and

Φ
[n]
hn

(tn−1,j) = hn

s∑
`=1

wj,`K(tn−1,j , tn−1,`, Y
[n]
` ), (9)

a Nordsieck GLM in a VS environment takes the form

Y [n] = (A⊗ Im)
(
F

[n]
hn

(tn−1,c) + Φ
[n]
hn

(tn−1,c)
)

+ (UDn ⊗ Im)y[n−1],

y[n] = (B ⊗ Im)
(
F

[n]
hn

(tn−1,c) + Φ
[n]
hn

(tn−1,c)
)

+ (V Dn ⊗ Im)y[n−1],
(10)

with the diagonal rescaling matrix Dn := D(δn) defined by

D(δn) := diag
(
1, δn, δ

2
n, . . . , δ

p
n

)
,

where δn is the ratio of sequential stepsizes at the step numbers n − 1 and n and is defined
by δn = hn/hn−1. One should note that the zero-stability properties of the GLMs (10) are
determined by the product matrix V Dn. The constructed methods in [2] are in general form
that should be transformed to the Nordsieck form to use in a VS environment (see [5] for the
transformation of the methods); although the method of order four in [2] has good stability
properties, it is not zero-stable in VS environment [5] and therefore can not be utilized in a
practical code. A method of order four in the Nordsieck form with good stability properties
and zero-stable in a (fixed stepsize and) VS environment for any stepsize pattern has been
constructed in [5] which has been utilized in the VS Matlab code vglm4.m based on GLM of
order four. In this section, we focus on this code and its implementation issues:

– Reducing the computational cost: In a similar way used in the code nvrk4.m, to reduce
the total computational cost, the tail is approximated by

F
[n]
hn

(tn−1,j) = g(tn−1,j) +
n(6)∑
κ=1

4∑
i=1

b
(6)
κi K

(
tn−1,j , t6(κ−1)+2(i−1), y6(κ−1)+2(i−1)

)
+

n(3)∑
κ=1

4∑
i=1

b
(3)

n(6)i
K
(
tn−1,j , t6n(6)+i−1, y6n(6)+i−1

)
+

n−1−`∑
κ=1

h`+κ−1

s∑
i=1

biK
(
tn−1,j , t`+κ−1 + cih`+κ−1, Y

[`+κ]
i

)
,

(11)
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where ` := 6n(6) + 3n(3). The quadrature order conditions for obtaining the quadrature

weights b
(3)

n(6)j
and b

(6)
κj are the same as those for v

(3)

n(6)j
and v

(6)
κj given by (6) and (7).

– Starting procedure: To begin the computations, at first the starting vector y[0] should
be computed. To do this, we carry out one step of natural VRK method of order four
with the abscissae vector c̃ = [c̃1 c̃2 c̃3 c̃4]

T which gives sufficient output information Ỹi,
i = 1, 2, 3, 4, to compute y[0]. Then the starting vector is computed by y[0] = (T−1⊗Im)S0

in which S0 :=
[
yT0 Ỹ T

1 Ỹ T
2 Ỹ T

3 Ỹ T
4

]T
, and T = [ti,j ] is a 5× 5 matrix given by

ti,j =


δ1j , i = 1, or j = 1,

c̃j−1i−1
(j − 1)!

, i, j 6= 1,

with δij as the Kronecker delta.

– Local error estimation: Local error of the method in the point tn is defined by

LEn =
∣∣∣∫ tn

tn−1

k(tn, s, yn(s)) ds− hn
s∑
`=1

ws,`K(tn−1,s, tn−1,`, Y
[n]
` )
∣∣∣,

with

yn(t) = g(t) + F
[n]
hn

(t) +

∫ t

tn−1

k(t, s, yn(s)) ds, t ∈ [tn−1, tn].

The local error LEn+1 is estimated as

est(tn+1) :=
∣∣∣hn 6∑

j=1

bjk
(
tn, tn−1 + ξjhn, u(tn−1 + ξjhn)

)
− hn

s∑
`=1

ws,`K(tn−1,s, tn−1,`, Y
[n]
` )

∣∣∣,
in which u(tn−1+θhn) is the continuous extension of the numerical solution by the formula

u(tn−1+θhn) =

s∑
j=1

wj(θ)Y
[n]
j +ws+1(θ)δny

[n−1](m+1 : 2m), n = 1, 2, . . . , N, θ ∈ [0, 1],

with wj(θ) as polynomials of degree d ≤ 5. These polynomials satisfy the linear system of
equations

s∑
j=1

wj(θ) c
k
j + δ1kws+1(θ) = θk, k = 0, 1, . . . , 5,

and the quadrature weights bj are given by

6∑
j=1

bj ξ
k−1
j =

1

k
, k = 1, 2, . . . , 6.

The value of ξj , j = 1, 2, . . . , 5, has been chosen as (j − 1)/5.

– Initial stepsize and stepsize changing strategy: The used strategy for the selection of the
initial stepsize and designing the stepsize changing strategy, for vglm4.m are the same as
those for nvrk4.m which are explained in the previous section.
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4 Numerical experiments

In this section, we give some numerical results obtained by the codes nvrk4.m and vglm4.m.
We performed numerical experiments on several linear and nonlinear problems which we report
here the results obtained on the following problems:

– The linear VIEs

y(t) = et +

∫ t

0
2 cos(t− s)y(s)ds, t ∈ [0, 2], (12)

with the exact solution (1 + t)2et.

– The nonlinear system of VIE [37]

[
y1(t)
y2(t)

]
=

 e−t − t2

2

t− t4

24

+

∫ t

0

 es−ty1(s)
2 + y2(s)

(t− s) y2(s)
2

1 + y1(s)2

 ds, t ∈ [0, 2], (13)

with the exact solution y1(t) = 1 and y2(t) = t.

Table 1: Numerical results for the problem (12).
tol The code ns nrs nge nke nje imax ge

10−4 vglm4 17 0 86 2065 16 2 4.45 · 10−1

nvrk4 21 0 85 2020 192 3 1.05 · 10−2

10−6 vglm4 30 0 151 4345 16 2 2.04 · 10−2

nvrk4 36 4 161 4672 624 4 8.79 · 10−4

10−8 vglm4 66 0 331 12685 16 2 7.20 · 10−4

nvrk4 82 4 345 14004 1280 3 6.08 · 10−5

10−10 vglm4 163 1 821 51230 32 2 2.07 · 10−5

nvrk4 201 0 805 56252 2224 3 2.03 · 10−6

10−12 vglm4 394 1 1976 237480 32 2 5.64 · 10−7

nvrk4 513 0 2053 302060 4048 3 5.25 · 10−8

Some cost statistics such as the number of steps, ns, the number of rejected steps, nrs,
the number of kernel evaluations, nke, the number of Jacobian evaluations, nje, the maximum
number of local Newton iterations on the whole steps, imax, and the global error at the endpoint
of the interval of integration, ge, have been reported in Tables 1 and 2 for problems (12) and
(13) and various values of tol = Atol = Rtol. Furthermore, Figure 1 displays stepsize and order
patterns in which the symbols “∗” stands for indicating the rejected steps in the code nvrk4.m.
The results illustrate the efficiency and capability of the codes nvrk4.m and vglm4.m in solving
linear and nonlinear (system of) VIEs.
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Figure 1: Local error estimate (top) and stepsize versus t (bottom) for the problem (12) with
tol = 10−8 (thick solid line for vglm4 and dashed line for nvrk4).

Table 2: Numerical results for the problem (13).
tol The code ns nrs nge nke nJe imax ge

10−4 vglm4 9 0 46 1020 32 3 2.83 · 10−4

nvrk4 15 0 61 5396 176 248 3.48 · 10−4

10−6 vglm4 15 1 81 1995 80 3 1.35 · 10−4

nvrk4 22 0 89 2264 336 3 4.95 · 10−5

10−8 vglm4 58 3 306 10920 128 3 1.27 · 10−5

nvrk4 43 2 181 5640 720 3 3.62 · 10−6

10−10 vglm4 134 4 691 37655 144 3 4.45 · 10−7

nvrk4 92 2 377 16488 1504 3 2.21 · 10−7

10−12 vglm4 255 3 1291 109725 112 3 1.19 · 10−8

nvrk4 214 0 857 63736 3424 3 7.48 · 10−9

5 Conclusion

In this paper we have aimed at introducing the reader to the recent efficient numerical methods
for VIEs and the elegant codes nvrk4.m and vglm4 developed in recent years as the production
of the natural VRK method and GLM of order four, respectively. The obtained numerical results
by these practical codes confirm that they can be widely used to solve system of (nonlinear)
VIEs.
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