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Abstract. Quasi-Newton methods are one of the popular iterative schemes
to solve unconstrained optimization problems. The high convergence rate
and excellent precision are two prominent characteristics of the quasi-
Newton methods. In this paper, according to the preferable properties
of a modified secant condition, a modified conjugate gradient method is
introduced. The new algorithm satisfies the sufficient descent property in-
dependent of the line search. The convergence properties of the proposed
algorithm are investigated both for uniformly convex and general functions.
Numerical experiments show the superiority of the proposed method.
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1 Introduction

The conjugate gradient (CG) methods are one of the useful iterative meth-
ods to solve the unconstrained optimization problem as follows:

min f(x), x ∈ Rn, (1)

where f : Rn → R is a continuously differentiable function, and its gradient
g(x) = ∇f(x) is available. In each iteration, the CG methods only need
to evaluate the objective function and its gradient. For this reason, this
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method is very desirable to solve large-scale unconstrained optimization
problems. The iterative formula of these methods is as follows:

xk+1 = xk + αkdk, (2)

where αk is a step length. The search direction dk is calculated by

dk =

{
−gk, k = 0,

−gk + βkdk−1, k ≥ 1,
(3)

where βk is a scalar describing the characteristics of the CG methods and
gk = g(xk). Various CG methods are deduced by the different choices of the
conjugate parameter βk. Some of the most famous conjugate parameters
are listed as follows:

βFR
k =

‖gk‖2

‖gk−1‖2
, βHS

k =
gTk yk−1

dTk−1yk−1
, βPRP

k =
gTk yk−1

‖gk−1‖2
, βDY

k =
‖gk‖2

dTk−1yk−1
,

which are called the Fletcher-Reeves (FR) [9], Hestenes-Stiefel (HS) [13],
Polak-Ribire-Polyak (PRP) [22, 23], and Dai-Yuan (DY) [6], respectively.
Note that yk−1 = gk − gk−1 and ‖·‖ denotes the L2 norm.

The convergence properties of these methods have been widely stud-
ied [8, 19]. Despite the appropriate numerical results of the HS and PRP
methods, their convergence properties are not efficient. On the other hand,
the DY and FR methods have some strong convergence characteristics, but
their numerical results are weaker than the other methods [19].

Quasi-Newton methods are another prominent class of iterative tech-
niques which have been marked due to the high convergence rate and their
good accuracy. The secant equation plays a basic role in constructing the
Hessian approximation, and quasi-Newton algorithms are built based on it.
Despite the good properties of this equation, quasi-Newton schemes only
use gradient information while their efficiency may be increased by using
the function information. In this regard, many researchers modified the se-
cant equation to improve convergence conditions of quasi-Newton schemes.
They modified the secant equation to using both the objective function
information and the gradient information. In the following, some of these
methods are mentioned.

In 2001, Zhang and Xu [27] introduced the following modified secant
equations:

Bksk−1 = zk−1; zk−1 = yk−1 +
θk−1

sTk−1uk−1
uk−1, (4)

where
θk−1 = 6 (fk−1 − fk) + 3 (gk−1 + gk)

T sk−1, (5)
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fk = f(xk), sk−1 = xk − xk−1, and uk−1 ∈ Rn is an arbitrary vector
satisfying sTk−1uk−1 6= 0. Zhang and Xu [27] established the local and
super-linear convergence of the modified method (4), under some suitable
conditions. The numerical results presented by Zhang and Xu [27] showed
that quasi-Newton methods based on the equation (4) are comparable to the
standard quasi-Newton methods. If uk−1 = sk−1, then the modified secant
equation (4) is an extension of the modified secant equation by Zhang et
al. [26]. Yabe and Takano [25] incorporated a non-negative parameter ψk to
the modified secant equation suggested by Zhang and Xu [27] and proposed
the following equations:

Bksk−1 = zk−1, zk−1 = yk−1 + ψk
θk−1

sTk−1uk−1
uk−1. (6)

It is clear that the equation (6) maintains the desired properties of the
equation (4).

The convergence properties of the BFGS method have been extensively
investigated by some scholars for convex functions [2, 3, 16]. To improve
the convergence conditions and the extension of the BFGS method for
non-convex functions, Li and Fukushima [14] suggested a modified secant
equation as follows

Bksk−1 = y∗k−1; y∗k−1 = yk−1 + tk−1‖gk−1‖sk−1, (7)

where

tk−1 = 1 + max

{
−yTk−1sk−1
‖sk−1‖2

, 0

}
.

They established the local and super-linear convergence of the BFGS method
for non-convex functions. In 2006, based on (7), Zhou and Zhang [28] in-
troduced the following modified secant equation

Bksk−1 = zk−1; zk−1 = yk−1 + hk−1‖gk−1‖rsk−1, (8)

where

hk−1 = C + max

{
−yTk−1sk−1
‖sk−1‖2

, 0

}
‖gk−1‖−r.

The modified secant equation (8) improves the numerical efficiency and
convergence conditions of the quasi-Newton methods.

On the other hand, the efficiency of the CG methods can be improved
by using the second-order information of the objective function. Dai and
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Liao [5] was a pioneer this idea and presented the CG method with the
following parameter based on the standard secant equation:

βDLk =
gTk yk−1

dTk−1yk−1
− t

gTk sk−1

dTk−1yk−1
,

where t > 0 is a parameter. They proposed the following modification of
βDLk to ensure global convergence for general functions:

βDL+k = max

{
gTk yk−1

dTk−1yk−1
, 0

}
− t

gTk sk−1

dTk−1yk−1
.

They showed that DL+ method has suitable convergence properties and
generates appropriate results in comparison to PRP and HS methods.
According to the modified secant equation (8), Similar to the idea of Dai
and Liao [5], Zhou and Zhang [28] presented the CG with the following
parameter as follows:

βZZk =
gTk zk−1

dTk−1zk−1
− t

gTk sk−1

dTk−1zk−1
.

Many researchers have been presented the CG methods satisfying the suffi-
cient descent property, see for example [1, 4, 12,17,18]. Although sufficient
descent condition is an extremely important property in proving the global
convergence of the CG methods, some CG methods lack it. The search
direction dk fulfills the sufficient descent property whenever there exists a
constant c1 > 0 such that

gTk dk ≤ −c1‖gk‖2, for all k ≥ 0.

Hager and Zhang [12] modified the well-known conjugate parameter βHSk
as follows:

βHZk = βHSk − 2

(
‖yk−1‖
dTk−1yk−1

)2

gTk dk−1,

which called CG-DESCENT method and is one of the best-known CG
methods both in terms of theoretical features and practical performances.
They established the global convergence for general functions by considering
the conjugate parameter as follows:

βHZ+k = max
{
βHZk , ηk

}
; ηk =

−1

‖dk‖min{η, ‖gk‖}
, (9)

where η > 0 is a constant.
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To deduce an effective family of the CG methods, Dai and Kou [4]
paid attention to the self-scaling memoryless BFGS method presented by
Perry [21] and Shanno [24], in which the search direction is defined by

dk+1 = −Hk+1gk+1, (10)

where

Hk+1 =
1

τk

(
I −

sky
T
k + yks

T
k

sTk yk

)
+

(
1 +

1

τk

‖yk‖2

sTk yk

)
sks

T
k

sTk yk
, (11)

and τk is a scaling parameter. Setting (11) in (10), the search direction
with a different multiplier is computed as follows:

dPSk+1 = −gk+1 +

[
gTk+1yk

sTk yk
−
(
τk +

‖yk‖2

sTk yk

)
gTk+1sk

sTk yk

]
sk +

gTk+1sk

sTk yk
yk. (12)

The idea of Dai and Kou [4] was to seek the closest two-term direction to the
search direction (12), and they obtained the following conjugate parameter:

βDKk (τk) =
gTk yk−1

dTk−1yk−1
−

(
τk +

‖yk−1‖2

sTk−1yk−1
−
sTk−1yk−1

‖sk−1‖2

)
gTk sk−1

dTk−1yk−1
.

Dai and Kou [4] used the following scaling parameter by Oren and Luen-
berger [20]

τk =
sTk−1yk−1

sTk−1sk−1
.

By this, the following conjugate parameter results

βDKk =
gTk yk−1

dTk−1yk−1
− ‖yk−1‖

2

sTk−1yk−1

gTk sk−1

dTk−1yk−1
. (13)

Based on the following conjugate parameter, they proved the global con-
vergence of this method

βDK+
k = max

{
βDKk (τk) , η

gTk dk−1
‖dk−1‖2

}
, (14)

where η ∈ [0, 1) is a parameter. Numerical experiments showed that this
algorithm is one of the most efficient CG methods.

In this regard, similar to the idea of Dai and Kou [4], Amini et al. [1]
sought the closest two-term direction to three-term direction of Narushima
et al. [18] and introduced the following parameter:

βMHS
k = βHSk

(
1−

(gTk dk−1)
2

‖gk‖2‖dk−1‖2

)
.
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They proved the global convergence of this method for general functions
by considering the following truncated form:

β̄k
MHS+

= max
{
β̄k

MHS
, 0
}
,

with

β̄k
MHS

= βMHS
k − λ

(
‖yk−1‖θk
dTk−1yk−1

)2

gTk dk−1; θk = 1−
(gTk dk−1)

2

‖gk‖2‖dk−1‖2
,

where λ > 1
4 is a parameter. The numerical experiments showed this algo-

rithm is effective in comparison with other algorithms.
In this study, using a modified secant equation, we improve the CG

method by Dai and Kou [4] and present a modified CG method. The
new search direction satisfies the sufficient descent property independent
of the line search and the convexity assumption on the objective function.
The new algorithm has the global convergence for general functions, under
the standard assumptions. Numerical experiments indicated that the new
algorithm is preferable, dealing with unconstrained optimization problems.

This paper is organized as follows. In the next section, after scheming
the new idea, some basic properties of the proposed method are proven. In
the third section, global convergence of the new algorithm is investigated
both for general functions and uniformly convex functions. In Section 4,
numerical experiments of the new method are evaluated. Some conclusions
are given in the final section.

2 New algorithm

In this section, according to a modified secant equation, a modified CG
method is proposed.

Quasi-Newton methods are one of the famous classes to solve the prob-
lem (1). We recall that both the modified secant equations (4) and (6) ap-
proximate the Hessian matrix with the high accuracy in comparison with
the standard secant equation. Inspired by the idea of Dai and Liao [5],
Yabe and Takano [25] proposed the following conjugate parameter:

βY Tk =
gTk zk−1

dTk−1zk−1
− t

gTk sk−1

dTk−1zk−1
,

where zk−1 is defined by (6). They showed that the numerical results of
this method are improved by using the modified secant equation (6).
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Motivated by the idea of Yabe and Takano [25], strong theory features of
the equation (6), and considering high efficiency of the DK method [4], we
propose the new conjugate parameter βMDK

k as follows:

βMDK
k =

gTk yk−1

dTk−1zk−1
− ‖yk−1‖

2

dTk−1zk−1

gTk dk−1

dTk−1zk−1
, (15)

where zk−1 is defined by (6). This formula is an extension of DK CG
parameter [4]. The relation (15) is resulted by replacing vector yk−1 with
zk−1 in the denominator of the relation (13).
Because dTk−1zk−1 may turn out to zero for a general function f , so the
formula (15) may not well-defined. To overcome this drawback, similar to
Li et al. [15]; we consider a modified version of (6) as follows:

Bksk−1 = z+k−1; z+k−1 = yk−1 + ψk
max {0, θk−1}
sTk−1uk−1

uk−1, (16)

with θk−1 defined by (5).
The following lemma shows that the new direction satisfies the sufficient

descent property independent of the line search.

Lemma 1. Consider the CG method (2), (3) with (15) . If dTk−1zk−1 6= 0,
then we have

gTk dk ≤ −
3

4
‖gk‖2. (17)

Proof. Since d0 = −g0, we have

gT0 d0 = −‖g0‖2≤ −
3

4
‖g0‖2,

which implies that (17) holds for k = 0. For k ≥ 1, multiplying (3) by gTk ,
we have

gTk dk =− ‖gk‖2 +
[

gTk yk−1

dTk−1zk−1
− ‖yk−1‖2

dTk−1zk−1

gTk dk−1

dTk−1zk−1

]
gTk dk−1

=

(
gTk yk−1

) (
dTk−1zk−1

) (
gTk dk−1

)
− ‖gk‖2

(
dTk−1zk−1

)2 − ‖yk−1‖2
(
gTk dk−1

)2(
dTk−1zk−1

)2 .

(18)

Applying the inequality uTk vk ≤
1

2

(
‖uk‖2 + ‖vk‖2

)
to the first term (18)

with

uk =
1√
2

(dTk−1zk−1)gk, vk =
√

2(gTk dk−1)yk−1,

we obtain (17).
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The new method with θk−1 = 0 reduces to the HS method. It is ex-
pected that the convergence properties of the proposed parameter (15) be
similar to the HS method. Therefore, according to the idea of Gilbert and
Nocedal [10] to prove the global convergence of the HS method for general
objective functions, we consider the following truncating

βMDK+
k = max

{
0, βMDK

k

}
. (19)

Using this truncating, the sufficient descent condition still holds for the new
search direction. Based on the above, the new algorithm is presented for
the proposed method.

Algorithm 1 (MDK algorithm)

Input. Given constant ε > 0. Chosen x0 ∈ Rn and set k = 0, d0 = −g0.
Step 1. If ‖gk‖∞ ≤ ε, stop.
Step 2. Compute dk by (3) and (19).
Step 3. Determine the step length αk by an appropriate line search.
Step 4. Set xk+1 = xk + αkdk.
Step 5. Set k = k + 1 and go to Step 1.

3 Global convergence properties

In this part, the global convergence of the MDK algorithm is analyzed.
Therefore, the following assumptions will be needed through this study.
Without loss of generality, suppose gk 6= 0 for all k ≥ 0; otherwise, we
assume that a stationary point can be found.

Assumption 1
(A1) The level set L0 = {x|f(x) ≤ f(x0)} is bounded, namely, there exists
a constant B > 0 such that

‖x‖ ≤ B, for all x ∈ L0. (20)

(A2) In some open neighborhood N ∈ L0, f is continuously differentiable
and its gradient g is Lipschitz continuous, namely, there exists a positive
constant L such that

‖g(x)− g(y)‖ ≤ L ‖x− y‖, for all x, y ∈ N. (21)

Assumption 1 conclude that there is a constant γ > 0 such that

‖g(x)‖ ≤ γ, for all x ∈ L0. (22)
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To guarantee the global convergence of a nonlinear CG method, we need
to impose a line search on it. Suppose that the step length αk fulfills the
Wolfe conditions, i.e.,

f(xk + αkdk) ≤ f(xk) + δαkg
T
k dk, (23)

g(xk + αkdk)
Tdk ≥ σgTk dk, (24)

where 0 < δ ≤ σ < 1. Note that the Wolfe conditions and (17) yield

dTk−1z
+
k−1 ≥ d

T
k−1yk−1 ≥ (σ − 1) gTk−1dk−1 ≥

3

4
(1− σ) ‖gk−1‖2 > 0,

which implies that (15) and (19) are well defined.
The next lemma, called Zoutendijk condition [29], plays an important

role to establish the MDK algorithm.

Lemma 2. [29] Suppose that Assumption 1 holds. Consider any CG
method in the forms (2)-(3), where step length αk satisfies the Wolfe line
search and the search direction dk is decreasing. If

∞∑
k=0

1

‖dk‖2
=∞, (25)

then,
lim inf
n−→∞

‖gk‖ = 0. (26)

Lemma 3. [25] Suppose that Assumption 1 holds. For θk−1 given by (5),
we have

|θk−1| ≤ 3L‖sk−1‖2. (27)

Proof. This relation immediately is resulted from the relation (5.12) from
[25].

Subsequently, we establish the global convergence of the MDK algo-
rithm for uniformly convex functions.

Theorem 1. Suppose that f is uniformly convex, i.e., there exists a con-
stant µ > 0, such that

(g(x)− g(y))T (x− y) ≥ µ‖x− y‖2, ∀x, y ∈ Rn. (28)

Also, Assumption 1 holds and ψk satisfies 0 ≤ ψk ≤ ρ̄ where ρ̄ is a positive

constant such that ρ̄ <
µ

3L
. Let {xk} be generated by Algorithm 1, then

either ‖gk‖ = 0 for some k or

lim inf
n−→∞

‖gk‖ = 0.
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Proof. Due to the sufficient descent condition (17), we get dk 6= 0. By
considering Lemma 2, it suffices to show that ‖dk‖ is bounded above. The
relations (6), (27), and (28) conclude that

|dTk−1zk−1|=|dTk−1yk−1 + ψk
θk−1

sTk−1uk−1
dTk−1uk−1|

≥|dTk−1yk−1| −
3ψkL‖sk−1‖2

αk−1

≥ (µ− 3ρ̄L)αk−1‖dk−1‖2.

(29)

Because µ− 3ρ̄L > 0, we obtain by this, (15),(21), and (29) that

|βMDK
k | =|

gTk yk−1

dTk−1zk−1
− ‖yk−1‖

2

dTk−1zk−1

gTk dk−1

dTk−1zk−1
|

≤ L‖gk‖‖sk−1‖
(µ− 3ρ̄L)αk−1‖dk−1‖2

+
L2‖sk−1‖2‖gk‖‖dk−1‖

(µ− 3ρ̄L)2 α2
k−1‖dk−1‖4

=A
‖gk‖
‖dk−1‖

,

where

A =
L

µ− 3ρ̄L
+

L2

(µ− 3ρ̄L)2
.

This relation together with (3) and (22) yield

‖dk‖ ≤‖gk‖+|βMDK
k |‖dk−1‖ ≤ (1 +A) γ <∞.

This completes the proof.

Property (*) plays an important role to prove the global convergence of
the CG methods. In the following, this property is expressed.

Property (*). Consider the CG method (2)-(3) and suppose that there
exist positive constants γ and γ̄ such that 0 < γ̄ ≤ ‖gk‖ ≤ γ, for all k ≥ 1.
Then, the method has property (*) if there exist constants b > 1 and ν > 0
such that for all k

|βk|≤ b,

and

‖sk−1‖ ≤ ν =⇒ |βk|≤
1

2b
.

Property (*) has been first formally stated by Gilbert and Nocedal [10].
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Lemma 4. Suppose that Assumption 1 holds. Also, ψk satisfies 0 ≤ ψk ≤ ρ̄
where ρ̄ is a fixed positive constant. Then, the new algorithm with (19)
satisfies property (*).

Proof. We assume that there exists a positive constant γ̄ such that

γ̄ ≤‖gk‖, (30)

holds for any k ≥ 0. Because {xk} ⊂ L0 and the level set L0 is bounded,
from (20), we have

‖sk−1‖ < 2B. (31)

From (17), (24), and (30), we conclude that

dTk−1yk−1 ≥
3

4
(1− σ) ‖gk−1‖2 ≥

3

4
(1− σ) γ̄2. (32)

Using relation gTk−1dk−1 < 0 and (24), result

gTk dk−1 ≤ gTk dk−1 − gTk−1dk−1 = dTk−1yk−1,

gTk dk−1 ≥ σgTk−1dk−1 = −σdTk−1yk−1 + σgTk dk−1.

Since σ ∈ (0, 1) and dTk−1yk−1 > 0, we get

|gTk dk−1|≤ max

{
1,

σ

1− σ

}
dTk−1yk−1 = c1d

T
k−1yk−1, (33)

where c1 = max
{

1, σ
1−σ

}
. Using (16), (32) and ψk ≥ 0, we conclude that

|dTk−1z+k−1| = |dTk−1yk−1 +
ψk
αk−1

max {0, θk−1}|

≥ dTk−1yk−1 ≥
3

4
(1− σ) γ̄2. (34)

From (33) and (34), we have

|gTk dk−1|≤ c1|dTk−1yk−1| ≤ c1|dTk−1z+k−1|. (35)

Therefore, from (31), (34) and (35), we obtain

|βMDK+
k | ≤‖gk‖‖yk−1‖

|dTk−1z
+
k−1|

+
‖yk−1‖2|gTk dk−1|(

dTk−1z
+
k−1
)2

≤ γL‖sk−1‖
3

4
(1− σ) γ̄2

+
c1L

2‖sk−1‖2
3

4
(1− σ) γ̄2

≤ γL‖sk−1‖
3

4
(1− σ) γ̄2

+
2Bc1L

2

3

4
(1− σ) γ̄2

‖sk−1‖

=c2‖sk−1‖,
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where

c2 =
4γL

3 (1− σ) γ̄2
+

8BL2c1
3 (1− σ) γ̄2

.

This relation implies that |βMDK+
k | ≤ c2‖sk−1‖, for all k. By putting

ν = 1
2bc2

, we obtain the desired result.

The following theorem corresponds to Theorem 4.3 in [10], and we men-
tion it for readability.

Theorem 2. [10] Suppose that Assumption 1 holds. Consider the method
(2)-(3) which satisfies the following conditions:

(C1) βk ≥ 0 for all k ≥ 0;

(C2) the Zoutendijk condition;

(C3) the sufficient descent condition;

(C4) property (*);

then lim infk−→∞ ‖gk‖ = 0.

Now, we can provide the global convergence result for MDK algorithm.

Theorem 3. Suppose that all conditions of Lemma 4 hold. Then, MDK
algorithm with (19) is globally convergent, i.e.,

lim inf
n−→∞

‖gk‖ = 0.

Proof. It is sufficient to show that conditions of Theorem 2 are held. From
(19), clearly, βMDK+

k ≥ 0 and the MDK algorithm with βMDK+
k satisfies

the sufficient descent condition. The relation (21) and Wolfe conditions get
the Zoutendijk condition. Hence, conditions (C1), (C2), and (C3) of the
Theorem 2 are satisfied. The previous lemma provides property (*) for the
MDK algorithm; hence (C4) is satisfied. This completes the proof.

4 Numerical experiments

In this section, we report the numerical performance of the new algorithm.
To investigate the numerical efficiency of the MDK algorithm, we compare
this algorithm with the HZ+ method, developed by Hager and Zhang [12],
and the DK+ method, proposed by Dai and Kou [4], on a collection of the
119 test problems of the CUTEst library [11], with dimensions between 2
to 20000. The codes were written in MATLAB 8.1 and were implemented
on a Vaio Laptop with 2.30 GHz of CPU, 4 GB of RAM. The line search
in all the algorithms is the strong Wolfe line search proposed by Nocedal
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Figure 1: Performance profile for the number of iterations.

and Wright [19] with δ = 0.01 and σ = 0.1, in which the initial step length
selected as follows:

α
(0)
k =

1, k = 1,

αk−1
gTk−1dk−1

gTk dk
, k > 1.

All algorithms are terminated when

‖gk‖∞ ≤ 10−6,

or the number of iterations exceeds 10000, and show it with the symbol
“Failed” in Table 1. In the figures, the curves have the following meaning:
MDK+ : The CG method with βMDK+

k given by (19), ψk = 0.6 and
uk−1 = yk−1.
HZ+ : The CG method proposed by Hager and Zhang [12] with βHZ+k

given by (9), η = 0.01.
DK+ : The CG method proposed by Dai and Kou [4] with βDK+

k given
by (14), η = 0.5 and

τk =
sTk−1yk−1

sTk−1sk−1
.

The numerical results of the mentioned algorithms are presented in
Table 1. This table includes the name of the test problems (Prob), their
dimensions (DIM), the total number of iterations (k), the total number
of function evaluations (Nf), and the total number of gradient evaluations
(Ng). Based on the performance profile proposed by Dolan and Moré [7],
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Figure 2: Performance profile based on the number of function evaluations.

the numerical results of the algorithms are compared, while including the
number of iterations, the number of function evaluations, and the number
of gradient evaluations, respectively.

The preliminary experiments demonstrate the efficiency of the new algo-
rithm. In details, Figure 1 shows that “MDK+” has the best performance
among all algorithms, which solves about 65% of the test problems with
the least number of iterations, while “HZ+” and “DK+” solve almost 56%
of the test problems. Figure 2 shows that “MDK+” solves 59% of the
test problems with the least number of function evaluations, where “HZ+”
and “DK+” solve almost 51% and 53% of the test problems, respectively.
Figure 3 is used to report the number of gradient evaluations, where the
”MDK+” solves 59% of the test problems with the least number of gradi-
ent evaluations, while “HZ+” and “DK+” can solve about 54% and 52%,
respectively. Hence, the numerical results indicate that the “MDK+” per-
forms better than the other algorithms (HZ+, DK+).

Table 1. Numerical results.
Prob Dim MDK+ HZ+ DK+

k/Nf/Ng k/Nf/Ng k/Nf/Ng
AIRCRFTB 8 43/201/168 45/203/165 35/171/138
ALLINITU 4 9/41/28 11/50/36 13/57/40
ARGLINA 200 1/4/3 1/4/3 1/4/3
ARGLINB 10 2/7/5 2/7/5 2/7/5
ARGLINC 10 2/7/5 2/7/5 2/7/5
ARWHEAD 500 9/81/58 9/84/61 9/84/61
BARD 3 24/97/81 62/231/198 28/110/95
BDEXP 5000 2/6/5 2/6/5 2/6/5
BEALE 2 12/71/53 12/60/45 12/62/47
BIGGS3 6 165/673/600 368/1481/1349 510/2011/1836
BIGGS5 6 165/673/600 368/1481/1349 510/2011/1836
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Table 1. Numerical results. (continued)
BIGGS6 6 133/590/533 142/614/556 150/640/574
BIGGSB1 5000 Failed Failed Failed
BOX 100 9/41/35 9/40/34 9/40/34
BOX2 3 14/55/43 42/149/132 22/85/69
BOX3 3 14 /55/43 42/149/132 22/85/69
BRKMCC 2 7/22/15 6/19/13 7/22/15
BROWNBS 2 16/63/48 17/72/54 13/57/42
BROYDN7D 500 207/637/604 204/630/594 206/647/608
BRYBND 5000 64/247/205 40/185/136 40/185/136
CHAINWOO 1000 410/1644/1257 326/1250/1043 343/1199/1092
CHNROSNB 50 298/976/934 273/902/854 291/959/916
COSINE 1000 9/40/25 9/35/24 9/35/24
CRAGGLVY 4 38/165/138 37/165/138 33/142/120
CUBE 2 21/171/133 24/153/116 27/185/145
DECONVU 63 1807/5602/5550 1178/3679/3616 998/3164/3098
DENSCHNA 2 9/50/36 9/50/36 9/50/36
DENSCHNB 2 7/39/27 7/39/27 7/39/27
DENSCHND 3 20/479/235 24/298/155 35/527/285
DENSCHNE 3 12/116/85 13/149/114 15/158/121
DENSCHNF 2 10/66/45 9/64/44 10/67/46
DIXMAANA 3000 6/41/28 6/41/28 6/41/28
DIXMAANB 3000 5/54/37 5/54/37 5/54/37
DIXMAANC 3000 6/67/45 6/67/45 6/65/44
DIXMAAND 3000 7/73/49 7/73/49 7/71/48
DIXMAANE 3000 264/695/682 264/695/682 264/695/682
DIXMAANF 3000 205/571/551 205/571/551 204/567/547
DIXMAANG 3000 200/571/549 200/571/549 202/572/549
DIXMAANH 3000 200/583/555 200/583/555 189/545/518
DIXMAANI 3000 4260/10511/10499 4732/11758/11746 4410/11067/11055
DIXMAANJ 3000 360/902/883 360/902/883 369/912/893
DIXMAANK 3000 313/806/784 313/806/784 326/828/804
DIXMAANL 3000 290/766/741 290/766/741 286/752/726
DIXMAANM 15 57/192/166 57/192/166 57/192/166
DIXMAANN 15 73/240/211 72/239/207 72/239/207
DIXMAANO 15 54/192/161 55/195/163 55/195/163
DIXMAANP 3000 1704/4238/4219 3320/8111/8092 2432/5980/5961
DIXON3DQ 1000 6757/16526/16522 7158/17513/17509 7122/17385/17381
DQDRTIC 5000 5/22/19 5/22/19 5/22/19
DQRTIC 5000 16/281/188 16/281/188 16/281/188
EDENSCH 36 23/117/82 24/121/86 24/121/86
EG2 1000 2/20/7 2/20/7 2/20/7
ENGVAL1 100 25/122/82 25/122/82 22/113/80
ENGVAL2 3 45/265/226 2319/9078/8634 431/1801/1659
ERRINROS 10 Failed 593/2404 /2158 494/1989/1801
EXTROSNB 1000 Failed 9459/31456/30249 8304/27547/26544
FLETCHCR 1000 4454/11659/11650 4412/11489/11476 4429/11567/11555
FMINSRF2 5625 362/909/909 365/915/915 365/915/915
FMINSURF 5625 557/1383/1383 554/1358/1358 554/1358/1358
FREUROTH 2 12/90/70 13/98/76 11/87/67
GENHUMPS 5000 9358/28365/28096 9407/28628/28400 9424/28706/28382
GENROSE 500 1091/3382/3325 1092/3454/3290 1099/3402/3333
GROWTHLS 3 1/21/3 1/21/3 1/21/3
GULF 3 201/816/753 1031/4116/3840 308/1422/1275
HATFLDD 3 52/272/235 65/312/269 52/262/227
HATFLDFL 3 31/147/128 103/493/442 40/186/167
HEART6LS 6 Failed Failed Failed
HEART8LS 8 5030/15605/15467 811/2940/2731 1136/3667/3543
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Table 1. Numerical results. (continued)
HELIX 3 31/137/114 55/215/180 55/215/180
HILBERTA 2 2/7/6 2/7/6 2/7/6
HILBERTB 10 4/13/9 4/13/9 4/13/9
HIMMELBG 2 7/36/26 8/35/26 8/34/25
HIMMELBH 2 8/29/20 7/28/19 8/31/21
HUMPS 2 29/213/155 16/144/99 24/186/122
KOWOSB 4 65/269/244 148/587/530 51/215/196
LIARWHD 5000 16/129/99 19/138/107 20/140/108
LOGHAIRY 2 53/420/308 29/314/210 35/293/221
LMINSURF 5625 350/878/878 347/872/872 347/872/872
MANCINO 100 11/34/23 11/34/23 11/34/23
MODBEALE 20000 554/2317/2025 798/2734/2584 Failed
MOREBV 5000 167/392/390 167/392/390 167/392/390
MSQRTALS 1024 4611/11430/11419 4588/11279/11268 4565/11231/11220
MSQRTBLS 1024 2994/7335/7324 2970/7309/7298 2995/7359/7348
NLMSURF 5625 392 985 983 404/1027/1024 404/1027/1024
NONCVXU2 5000 Failed Failed Failed
NONDIA 5000 10/96/72 11/102/78 11/102/78
NONDQUAR 5000 7191/27269/25533 2724/10760/9838 1890/7493/6845
NONSCOMP 5000 43/177/125 43/179/126 43/179/126
OSCIPATH 10 Failed Failed Failed
OSBORNEB 11 399/1384/1311 277/961/886 297/1042/950
PALMER5C 6 6/19/14 6/19/14 6/19/14
PENALTY1 100 27/287/212 29/278/204 26/269/198
PENALTY2 50 1608/6119/5679 384/1649/1485 879/3609/3184
POWELLSG 5000 139/572/508 91/362/313 308/1317/1161
POWER 100 36/203/149 36/203/149 36/203/149
QUARTC 5000 16/281/188 16/281/188 16/281/188
ROSENBR 2 27/158/127 33/186/150 31/171/135
S308 2 7/69/46 7/69/46 7/69/46
SCHMVETT 100 43/135/109 43/135/109 43/135/109
SENSORS 10 20/76/56 20/79/60 20/80/60
SINEVAL 2 51/246/212 52/282/235 50/271/225
SINQUAD 5 31/115/95 22/91/74 34/126/104
SISSER 2 5/76/51 5/76/51 5/76/51
SNAIL 2 5/27/16 6/28/18 6/26/16
SPARSINE 5000 Failed Failed Failed
SPARSQUR 10000 15/199/136 15/199/136 15/199/136
SPMSRTLS 4999 224/609/601 234/647/638 234/647/638
SROSENBR 5000 11/71/52 11/71/52 11/73/53
TESTQUAD 5000 6794/18025/18018 7889/20705/20698 6336/16829/16822
TOINTGSS 5000 5/16/11 5/16/11 4/13/9
TOINTQOR 50 29/88/64 30/89/64 29/88/64
TQUARTIC 5000 15/88/72 16/106/90 12/98/84
TRIDIA 5000 2398/5741/5736 2381/5717/5712 2415/5785/5780
VARDIM 200 16/586/325 16/586/325 16/586/325
VAREIGVL 50 23/71/48 23/71/48 23/71/48
WATSON 12 1475/5684/5212 1429/5786/5261 1739/6782/6203
WOODS 4000 226/783/747 243/824/783 243/824/783
YFITU 3 1176/4416/4057 946/3560/3249 1322/4811/4514
ZANGWIL2 2 1/4/4 1/4/4 1/4/4
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Figure 3: Performance profile based on the number of gradient evaluations.

5 Conclusion

The modified secant equations by Zhang et al. [26] and Zhang and Xu [27]
possess strong theoretical properties. The modified secant equation approx-
imates the Hessian matrix with high accuracy. In this study, regarding the
strong theory features of a modified secant equation, we decided to modify
the DK method [4] by using it, then a new CG method is presented. The
new search direction always satisfies the sufficient descent condition, and
the proposed method has the global convergence for general functions. Nu-
merical experience on the CUTEst collection shows the MDK algorithm is
capable.
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