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Abstract. Massive MIMO is known as a core technology for future 5G
networks. The major advantage of massive MIMO over the conventional
MIMO systems is that different mobile users are allowed to communicate
in the same time-frequency resources while the resultant severe interfer-
ences can be eliminated using linear signal processing schemes. This is a
consequence of the favorable propagation condition and channel hardening
which are known as two basic limiting results in mathematics. In this paper
we propose new stochastic convergence proofs for these limiting results in
terms of the complete convergence in a massive MIMO system with uncor-
related Rayleigh fading.
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1 Introduction

By the increase in popularity of portable communication devices such
as smart phones and tablets, demand for high quality wireless services at
any time is exponentially increasing. However, the available frequency and
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time network resources remain limited. Therefore, any approach that theo-
retically increases data rate and reliability could potentially be a candidate
to the development of the next generation of wireless networks. Massive
MIMO which refers to implementing large antenna arrays at the base sta-
tions (BS), is known as a core technology for the development of next
generation wireless networks and could potentially increase data rates of
mobile users’ equipment (UEs) by simultaneously serving multiple UEs
communicating in the same time-frequency resources [8].

In the literature, several authors (e.g., [8], [10] and [11]) have discussed
on the theoretical aspects of the massive MIMO technology and its appro-
priateness for using in 5G cellular communications systems. In particular,
as illustrated in [11], when the number of antennas at the BS is very large
the wireless channels between the BS and UEs show interesting proper-
ties such as the channel hardening and the favorable propagation condition
for some specific fading scenarios. The channel hardening helps to miti-
gate the severe effects of small-scale fading while the favorable propagation
condition makes it possible to eliminate multi-user interference at the BS
using a simple linear processing scheme. These important properties are
exploited recently by researchers to develop new communications protocols
for massive MIMO wireless systems with Rayleigh fading channels (see,
e.g., [5], [7] and [12]). From a mathematical perspective, the channel hard-
ening and favorable propagation properties are known as limiting results
on random channel gains when the number of antennas at the BS goes to
infinity. Despite the importance of these basic properties, detailed con-
vergence results have yet not been presented in the literature. Although
it is always possible to check the correctness of these limiting properties
by applying Monte-Carlo simulation at finite large numbers of BS anten-
nas, for a rigorous investigation of these properties in the case of infinite
number of BS antennas, we need to use the stochastic convergence theory.
In the literature, some authors resort to the strong law of large numbers
as a reasoning tool to get an almost sure (a.s.) convergence (see, e.g., [2]
and [11]).

In this paper, the channel hardening and favorable propagation prop-
erties are studied in the sense of complete convergence (c.c. in brief),
for independent Rayleigh fading channels. In the state-of-the-art in en-
gineering systems, such as communication networks, the c.c. concept is
not yet taken into account. This concept originally introduced by [6], is a
stronger convergence result than the almost sure convergence. Hence this
paper presents tighter convergence analysis for the channel hardening and
favorable propagation properties in the sense of the complete convergence.
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The proposed convergence analysis requires determining the higher order
moments of radio channel gains which are directly calculated and utilized.

The rest of paper is organized as follows. In Section 2, some prelimi-
naries including a description of the data transmission and channel model,
propagation conditions in massive MIMO systems, and a literature review
of the existing convergence results are provided. New convergence results
in terms of the complete convergence are proposed in Section 3, and the
concluding remarks are given in Section 4.

2 System model

We consider a wireless cellular communication system consisting of L
separate communication cells, in which a cell refers to a geometrical area
with one multiple antenna BS at the center and numerous single antenna
UEs distributed in the area. The number of antennas per BS and the
number of UEs per cell are denoted with M and K, respectively.

2.1 Channel and data transmission model

There exist M wireless channels between each UE and M antennas of
each BS whose fading gains are assumed to be independent and identically
distributed (i.i.d.) random variables (r.v.s). Packing these M channels into
a single vector with M elements gives what is called the channel vector
between each UE and each BS. For instance, the vector hjlk ∈ CM×1 rep-
resents the channel gain vector between UE k from cell l and the BS j as
follows:

hjlk
∆
=
[
h

(1)
jlk h

(2)
jlk · · · h

(M)
jlk

]T
. (1)

In isotropic scattering environments with none-line-of-sight path, the r.v.s

h
(1)
jlk, h

(2)
jlk, . . . , h

(M)
jlk are modeled as complex circularly symmetric Gaussian

r.v.s with zero-mean and the same variances ( [3], [11]) denoted by Cjlk,
i.e.,

h
(r)
jlk ∼ CN(0, Cjlk), r = 1, 2, . . . ,M . (2)

Since the magnitude variable |h(r)
jlk| has Rayleigh distribution, the described

channels in (2) are also known as Rayleigh fading channels. Because of i.i.d.
assumption on the channel gains, the covariance matrix of the random
vector hjlk is diagonal, and its distribution is given by:

hjlk ∼ CN(0, Cjlk.IM ) , (3)

where IM denotes the M ×M identity matrix.
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We consider uplink data transmission in a cellular network where at one
time slot each active UE transmits one data symbol. Since each antenna
of the BS j receives symbols from all UEs in all cells, hence the received
symbol vector Yj ∈ CM×1 at BSj at one time slot is represented by:

Yj =

L∑
l=1

K∑
k=1

(
√
plk.hjlk.xlk) +Nj , (4)

where xlk ∈ C1 is the data symbol transmitted by the UE k from cell l with
power plk, and Nj ∈ CM×1 is the additive white noise vector. Eq.(4) can
be rearranged as follows:

Yj =
K∑
k=1

(√
pjk.hjjk.xjk

)
+

L∑
l=1
l 6=j

K∑
k=1

(
√
plk.hjlk.xlk) +Nj . (5)

The first desired term in (5) is the combination of symbols received from
UEs inside the cell j. The second term is the combination of symbols
received at BS j from UEs of the other cells considered as the inter-cell
interference.

2.2 Propagation conditions in massive MIMO systems

In the literature, a scenario in which the UE channel gain vectors are
assumed orthogonal is known as the favorable propagation condition ( [10]
and [11]). In this case, to detect symbols of the UE m in cell j, the BS j can
eliminate the interference terms in equation (5) by implementing a linear
signal processing scheme like:

Ỹjm
∆
=

hHjjm

‖hjjm‖2
.Yj =

√
pjm.xjm +

hHjjm

‖hjjm‖2
.Nj , (6)

where the superscript H indicates the Hermitian transpose operation and
‖.‖ is the Euclidean norm. Of course, using (6) one may use a maximum
likelihood (ML) detection rule to detect data symbols of the UE m. Un-
fortunately, in real wireless communication scenarios channel orthogonality
will never be exactly satisfied. In such scenarios, asymptotically favorable
propagation condition states that with a huge number of antennas at the
BS (massive MIMO case), users’ channel vectors are almost orthogonal
and therefore a linear signal processing scheme is still able to eliminate the
interferences of undesired UEs effectively [11]. Asymptotically favorable
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propagation condition and the channel hardening property for radio chan-
nels with independent Rayleigh fading have been already studied in the
literature [2] [11]. Here, we briefly introduce these properties in terms of
two lemmas (Lemma 1 and Lemma 2) as follows:

Lemma 1. (Asymptotically favorable propagation condition)

Let hjl1k1 = [h
(1)
jl1k1

, . . . , h
(M)
jl1k1

]T and hjl2k2 = [h
(1)
jl2k2

, . . . , h
(M)
jl2k2

]T repre-
sent random channel gain vectors of two different users in the mas-
sive MIMO system, i.e, (l1, k1) 6= (l2, k2). These vectors are sta-
tistically independent and distributed as hjl1k1 ∼ CN(0, Cjl1k1 .IM ) and
hjl2k2 ∼ CN(0, Cjl2k2 .IM ). The following a.s. convergence holds for
M →∞:

1

M
hHjl1k1 .hjl2k2 =

1

M

M∑
r=1

(
h

(r)
jl1k1

∗
.h

(r)
jl2k2

)
a.s.−→ 0 . (7)

Proof. For the assumed channel gains the entries
(
h

(r)
jl1k1

∗
.h

(r)
jl2k2

)
, ∀r = 1, 2,

. . . ,M appeared in the summation term in (7) construct a sequence of in-
dependent random variables with the same distribution function and zero

first-order moment (E
[
h

(r)
jl1k1

∗
.h

(r)
jl2k2

]
= E

[
h

(r)
jl1k1

∗]
.E
[
h

(r)
jl2k2

]
= 0). There-

fore using the strong law of large numbers (see, [9, theorem 4.3.3]), the a.s.
convergence in (7) is expected.

Lemma 2. (Channel hardening property) Let hjlk =
[
h

(1)
jlk, . . . , h

(M)
jlk

]T
represent the channel gain vector of a typical user in the massive MIMO
system with the probability distribution function given by (3). The following
a.s. convergence holds for M →∞:

1

M
‖hjlk‖2 =

1

M

M∑
r=1

∣∣∣h(r)
jlk

∣∣∣2 a.s.−→ Cjlk . (8)

Proof. Since the entries |h(r)
jlk|

2
, ∀r = 1, 2, . . . ,M appeared in the summation

term in (8) build a sequence of independent random variables with the
same distribution function and finite first-order moment (because from (3)

we know that the expectation E[|h(r)
jlk|

2
] = Cjlk <∞ is bounded), therefore

the a.s. convergence in (8) is expected using the strong law of large numbers
(see, [9, theorem 4.3.3]).

Using the channel hardening property in (8) the receiver side (BSs) can
perform some signal processing tasks to get a more stable signal quality
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for the UE m in the sense that the received signal-to-interference-plus-
noise ratio (SINR) of this user does not fluctuate with small-scale fading
in the channel. To more clarify on the effects of the channel hardening
and favorable propagation properties on the massive MIMO transmission
scheme, in the sequel it is briefly shown that by utilizing (7) and (8) a
linear signal processing scheme is still capable of eliminating the undesired
interferences in the BS receiver. Let us start with the following linear
operation on the received vector Yj in (5) to detect symbols of the UE m:

hHjjm

‖hjjm‖2
.Yj =

√
pjm xjm +

K∑
k=1
k 6=m

(
√
pjk .

hHjjm. hjjk

M
.

M

‖hjjm‖2
.xjk

)

+
L∑
l=1
l 6=j

K∑
k=1

(
√
plk.

hHjjm. hjlk

M
.

M

‖hjjm‖2
.xlk

)
+

hHjjm

‖hjjm‖2
.Nj . (9)

The second and the third terms in RHS of (9) are the interferences cre-
ated by the undesired UEs on the intended UE m. Using the conver-

gence results in (7) and (8), for M →∞ we get
hHjjm. hjjk

M
a.s.−→ 0,∀m 6= k,

hHjjm. hjlk
M

a.s.−→ 0,∀j 6= l,
‖hjjm‖2

M
a.s.−→ Cjjm and therefore in the asymptotic

case M →∞, we have:

hHjjm

‖hjjm‖2
.Yj

a.s.−→ √pjm.xjm +
hHjjm

‖hjjm‖2
.Nj . (10)

As a result of (10), in a massive MIMO system with very large M (e.g.,
M > 100), one can use the following equalized received symbol which is
now ready for the ML detection of UE m symbols:

Ỹjm
∆
=

hHjjm

‖hjjm‖2
.Yj ≈

√
pjm.xjm +

hHjjm

‖hjjm‖2
.Nj . (11)

Eq. (11) states that in a massive MIMO system the UE m can communicate
with the BS in the same time-frequency resources that the other UEs are
communicating with the BS, and the BS can still remove the resultant
interferences by implementing a linear signal processing scheme, This leads
to an excellent symbol detection performance similar to that of a UE which
attends in the network alone.
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3 New convergence results

In this section, we provide new convergence results for the Lemmas 1
and 2 in the previous section. In particular, we show that tighter con-
vergence results can be obtained for the channel hardening and favorable
propagation properties in terms of the complete convergence.

3.1 Basic convergence concepts

We start with a short review of the following two basic convergence
concepts.

Definition 1. [9, p. 50] A sequence {Un, n ≥ 1} of r.v.s is said to be
completely convergent to constant θ if:

lim
N→∞

∞∑
n=N

Pr {|Un − θ| > ε} = 0, ∀ε > 0 , (12)

where Pr {·} denotes probability. Equivalently, if the sequence {Un, n ≥ 1}
converges completely to θ, then the series

∑∞
n=1 Pr {|Un − θ| > ε} converges

for every ε > 0, i.e., [9, p. 52]:

∞∑
n=1

Pr {|Un − θ| > ε} <∞, ∀ε > 0 . (13)

Definition 2. [9, p. 30] A sequence {Un, n ≥ 1} of r.v.s is said to be
almost surely (certainly) convergent to constant θ if:

lim
N→∞

Pr

{ ∞⋃
n=N

(|Un − θ| > ε)

}
= 0, ∀ε > 0 . (14)

Remark 1. Since the following inequality holds

Pr

{ ∞⋃
n=N

(|Un − θ| > ε)

}
≤
∞∑
n=N

Pr {|Un − θ| > ε}, ∀ε > 0 , (15)

hence we can always get (14) from (12), but the vice versa is not true. To
more clarify, here we show a simple example. Let us consider a uniform
probability space ζ ∈ [0, 1] and define the random sequence {Un}∞n=1 with

Un =

{
1, 0 < ζ < 1

n ,
0, otherwise.

(16)
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Since Un is a sequence of dependent r.v.s, one can easily show that

lim
N→∞

Pr

{ ∞⋃
n=N

(|Un| > ε)

}
= lim

N→∞

1

N
= 0 , (17)

which means that the a.s. convergence holds. However,
∑∞

n=N Pr {|Un| > ε}
=
∑∞

n=N

(
1
n

)
diverges, and therefore the sequence does not converge com-

pletely. This example shows that for random sequences with dependent ele-
ments, (12) cannot be resulted from (14), and therefore the c.c. is stronger
than the a.s. convergence. In particular, when the sequence {Un, n ≥ 1}
consists of i.i.d. random variables, both (12) and (14) are equivalent and
the c.c. and a.s. convergence imply the same meaning.

Remark 2. The difference between the c.c. and a.s. convergence concepts
may be intuitively explained as follows. From (12) we can infer that for
all large n (n ≥ N) the event (|Un − θ| > ε) happens with zero probability,
which means that all random variables Un are close to θ enough. However,
when (14) holds such implication is not necessarily true, i.e., from (14)
we cannot say that for all large n (n ≥ N) the event (|Un − θ| > ε) happens
with zero probability (there may be a large n for which the variable Un is
not close to θ enough).

3.2 On the complete convergence of favorable propagation
condition

Theorem 1. Let

hjl1k1 = [h
(1)
jl1k1

, . . . , h
(M)
jl1k1

]T and hjl2k2 = [h
(1)
jl2k2

, . . . , h
(M)
jl2k2

]T ,

represent channel gain vectors of two different users in the massive MIMO
system, i.e., (l1, k1) 6= (l2, k2). The elements of the vectors hjl1k1 and hjl2k2
are independent zero-mean complex normal r.v.s with bounded second-order
moments. For these vectors, the following complete convergence holds for
M→∞:

1

M
hHjl1k1 .hjl2k2 =

1

M

M∑
r=1

(
h

(r)
jl1k1

∗
.h

(r)
jl2k2

)
c.c.−→ 0 . (18)

Proof. For simplicity, we use the following new brief notation:

X = [x1 · · · xM ]T
∆
= hjl1k1 =

[
h

(1)
jl1k1

· · · h(M)
jl1k1

]T
, (19)

Y = [y1 · · · yM ]T
∆
= hjl2k2 =

[
h

(1)
jl2k2

. . . h
(M)
jl2k2

]T
, (20)
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VM
∆
=

1

M

M∑
r=1

(
h

(r)
jl1k1

∗
.h

(r)
jl2k2

)
=

1

M

M∑
r=1

(xr
∗.yr) . (21)

In the considered model, X and Y are independent random vectors whose el-
ements x1, x2, . . . , xM and y1, y2, . . . , yM are zero-mean independent Gaus-
sian r.v.s. Of course, the elements of the sequence {VM} ,∀M = 1, 2, . . . are
dependent r.v.s, and therefore for this sequence the c.c. concept is different
from the a.s. convergence as explained in Subsection 3.1.

Using the notation (19-21), the claim in (18) may be re-expressed as
the complete convergence VM

c.c.−→ 0 for M →∞. To prove this claim, we
need to show that the series

∑∞
M=1 Pr {|VM | > ε} converges for every ε > 0

(see, Eq. (13)). The proof is started with the evaluation of the fourth-order
moment of the r.v. VM as follows:

E
[
|VM |4

]
= E[VM .VM

∗.VM .VM
∗]

= E

[(
1

M

M∑
r1=1

(
x∗r1 .yr1

))
.

(
1

M

M∑
r2=1

(
x∗r2 .yr2

))∗

.

(
1

M

M∑
r3=1

(
x∗r3 .yr3

))
.

(
1

M

M∑
r4=1

(
x∗r4 .yr4

))∗]

=
1

M4

M∑
r1=1

M∑
r2=1

M∑
r3=1

M∑
r4=1

E
[
x∗r1 .xr2 .x

∗
r3 .xr4 .yr1 .y

∗
r2 .yr3 .y

∗
r4

]
, (22)

where x∗ denotes the complex conjugate of x, and E[.] is the expectation
operator. The nested sums in (22) have in general M4 components, however
in our setup most of components are zero because the r.v.s {xr} and {yr}
are independent and zero-mean. Still, the following components are non-
zero:

M∑
r1=1

M∑
r2=1

M∑
r3=1

M∑
r4=1

E
[
x∗r1 .xr2 .x

∗
r3 .xr4 .yr1 .y

∗
r2 .yr3 .y

∗
r4

]
=

M∑
r1=1

E
[
x∗r1 .xr1 .x

∗
r1 .xr1 .yr1 .y

∗
r1 .yr1 .y

∗
r1

]
︸ ︷︷ ︸

r4=r3=r2=r1

+

M∑
r1=1

M∑
r3=1
r3 6=r1

E
[
x∗r1 .xr1 .x

∗
r3 .xr3 .yr1 .y

∗
r1 .yr3 .y

∗
r3

]
︸ ︷︷ ︸

r4=r3 6=r1=r2
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+
M∑
r1=1

M∑
r2=1
r2 6=r1

E
[
x∗r1 .xr2 .x

∗
r1 .xr2 .yr1 .y

∗
r2 .yr1 .y

∗
r2

]
︸ ︷︷ ︸

r4=r2 6=r1=r3

+

M∑
r1=1

M∑
r2=1
r2 6=r1

E
[
x∗r1 .xr2 .x

∗
r2 .xr1 .yr1 .y

∗
r2 .yr2 .y

∗
r1

]
︸ ︷︷ ︸

r3=r2 6=r1=r4

=
M∑
r1=1

E
[
|xr1 |

4
]
.E
[
|yr1 |

4
]

+

M∑
r1=1

M∑
r3=1
r3 6=r1

(
E
[
|xr1 |

2
]
.E
[
|xr3 |

2
]
.E
[
|yr1 |

2
]
.E
[
|yr3 |

2
])

+
M∑
r1=1

M∑
r2=1
r2 6=r1

(
E
[(
x∗r1
)2]

.E
[
x2
r2

]
.E
[
y2
r1

]
.E
[(
y∗r2
)2])

+

M∑
r1=1

M∑
r2=1
r2 6=r1

(
E
[
|xr1 |

2
]
.E
[
|xr2 |

2
]
.E
[
|yr1 |

2
]
.E
[
|yr2 |

2
])

. (23)

To calculate (23) one needs to compute the moments appearing in nested
sums. Since all elements of the vector X are zero-mean complex normal r.v.s
with the same variances, for the rth element of this vector we consider the
distribution xr ∼ CN

(
0, 2σ2

1

)
, where 2σ2

1 (= Cjl1k1) denotes the variance
of distribution. In a similar manner, the rth element of the vector Y has
distribution yr ∼ CN

(
0, 2σ2

2

)
with the variance 2σ2

2 (= Cjl2k2). Using the
notations xr = <{xr}+ j.={xr} and yr = <{yr}+ j.={yr} and consider-
ing the fact that the real and imaginary parts of xr and yr are independent
real zero-mean normal r.v.s with variances σ2

1 and σ2
2 respectively, we can

get:

E
[(
x∗r1
)2]

= E
[
x2
r2

]
= E

[
y2
r1

]
= E

[(
y∗r2
)2]

= 0 . (24)

Moreover, the positive r.v.s |xr| and |yr| has Rayleigh distributions with
parameters

√
σ2

1 and
√
σ2

2, respectively (see, [13, Eq. (6-70)]). In this case,
the nth order moment of |xr|, i.e., E [|xr|n] is given by [13, Eq. (5-76)]:

E[|xr|n] =

{
(1× 3× · · · × n)σ2

1

√
π
2 , n = 2k + 1 ,

2kk!σ2k
1 , n = 2k .

(25)
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A similar equation like (25) can be written for the nth order moment of |yr|,
i.e., E[|yr|n] with the parameter

√
σ2

2. Using (25), the absolute moments
appearing in (23) are given by:

E[|xr1 |4] = 8σ4
1 , (26)

E[|yr1 |4] = 8σ4
2 , (27)

E[|xr1 |2] = E[|xr2 |2] = E[|xr3 |2] = 2σ2
1 , (28)

E[|yr1 |2] = E[|yr2 |2] = E[|yr3 |2] = 2σ2
2 . (29)

By substituting (24) and (26-29) into (23), the forth-order moment in (22)
can be obtained as:

E
[
|VM |4

]
=

64

M4

M∑
r1=1

σ4
1σ

4
2 +

16

M4

M∑
r1=1

M∑
r3=1
r3 6=r1

σ4
1σ

4
2 +

16

M4

M∑
r1=1

M∑
r2=1
r2 6=r1

σ4
1σ

4
2

=
32(M + 1)

M3
σ4

1σ
4
2 . (30)

From Bienaymé inequality [14] we get:

Pr {|VM | > ε} ≤
(

1

ε4

)
E
[
|VM |4

]
=

32σ4
1σ

4
2

ε4

(
1

M2
+

1

M3

)
. (31)

From (31), we get the following limited bound:

∞∑
M=1

Pr {|VM | > ε} ≤ 32σ4
1σ

4
2

ε4

( ∞∑
M=1

1

M2
+

∞∑
M=1

1

M3

)

=
32σ4

1σ
4
2

ε4

(
π2

6
+ ζ (3)

)
<∞ , (32)

where in (32), ζ (3) ∼= 1.202 is the Riemann zeta function, and it is as-
sumed that the second-order moments of channel gains are bounded, i.e.,
σ2

1, σ
2
2 <∞. As a result of (32), the series

∑∞
M=1 Pr {|VM | > ε} always

converges and therefore the proof is completed.

3.3 On the complete convergence of channel hardening prop-
erty

Theorem 2. Let hjlk =
[
h

(1)
jlk, . . . , h

(M)
jlk

]T
represent the channel gain vector

of a typical user in the massive MIMO system with the probability distri-
bution function indicated by (3). The following complete convergence holds
for M →∞:

1

M
‖hjlk‖2 =

1

M

M∑
r=1

∣∣∣h(r)
jlk

∣∣∣2 c.c.−→ Cjlk . (33)



440 N. Pourjafari, J.S. Harsini

Proof. For simplicity, using the brief notation (19), we define the sequence
of r.v.s {WM} , ∀M = 1, 2, . . . as below:

WM
∆
=

1

M

M∑
r=1

∣∣∣h(r)
jlk

∣∣∣2 =
1

M

M∑
r=1

|xr|2 , (34)

hence, the aim is to prove the claim WM
c.c.−→

(
Cjlk = 2σ2

)
for M →∞. It

is worth noting that {WM} is a sequence of dependent r.v.s, and there-
fore for this sequence the c.c. concept is different from the a.s. con-
vergence as explained in Subsection 3.1. To prove the complete con-
vergence WM

c.c.−→ 2σ2 for M →∞, we equivalently show that the series∑∞
M=1 Pr

{∣∣WM − 2σ2
∣∣ > ε

}
converges for every ε > 0 (see, Eq. (13)). The

proof is started by calculating the forth-order moment E
[∣∣WM − 2σ2

∣∣4].
Since the r.v. WM takes positive real values, the quantity WM − 2σ2 is also
real, and therefore its fourth-order moment is given by:

E
[∣∣WM − 2σ2

∣∣4] = E
[(
WM − 2σ2

)4]
= E

[
W 4
M

]
− 8σ2.E

[
W 3
M

]
+ 24σ4.E

[
W 2
M

]
− 32σ6.E[WM ]

+ 16σ8 . (35)

To compute the moments E[Wn
M ], n = 1, 2, 3, 4 appearing in (35), we first

obtain the probability density function (PDF) of the r.v. WM in (34). Since
xr ∼ CN

(
0, 2σ2

)
we know that the r.v. |xr|2 has exponential distribution

with parameter β = 1/2σ2 (see, [13, p.162]). In this case, since all r.v.s
|xr|2, ∀r = 1, 2, . . . ,M have the same distribution, from [1, Theorem 3.1] we

can deduce that the r.v. Z
∆
=
∑M

r=1 |xr|
2 ∼ Erlang(M,β) has the Erlang

distribution with the following PDF:

fZ(z) =
βM .zM−1.e−β.z

(M − 1)!
, (36)

therefore, the r.v. WM = Z
M has the PDF:

fWM
(w) = M.fZ(M.w) =

MM .βM .wM−1.e−Mβw

(M − 1)!
. (37)

Using (37), we can now compute the nth order moment E[Wn
M ] as follows:

E [Wn
M ] =

∞∫
0

wn.fWM
(w).dw =

MM .βM

(M − 1)!

∞∫
0

wn+M−1.e−Mβw.dw . (38)
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Using [4, Eq.(2.321)], the integral in the right hand side of (38) is given by:

∞
∫
0
wn+M−1e−Mβwdw =

e−Mβw
n+M−1∑
k=0

(−1)
k
k!

(
n+M − 1

k

)
(−Mβ)

k+1
wn+M−1−k


∞

w=0

=
(n+M − 1)!

(Mβ)
n+M

, (39)

hence, we get:

E [Wn
M ] =

MM .βM

(M − 1)!

(
(n+M − 1)!

(Mβ)n+M

)
. (40)

From (40), and for the special cases n = 1, 2, 3, 4 we obtain:

E[WM ] =
1

β
, (41)

E[W 2
M ] =

M + 1

Mβ2
, (42)

E[W 3
M ] =

M(M + 1)(M + 2)

(Mβ)3
, (43)

E[W 4
M ] =

M(M + 1)(M + 2)(M + 3)

(Mβ)4
. (44)

By substituting (41-44) in to (35), we get:

E
[∣∣WM − 2σ2

∣∣4] =
3

M2.β4
+

6

M3.β4
. (45)

From Bienaymé inequality ( [14]) and using (45), Pr
{∣∣WM − 2σ2

∣∣ > ε
}

can
be bounded as:

Pr
{∣∣WM − 2σ2

∣∣ > ε
}
≤
(

1

ε4

)
.E
[∣∣WM − 2σ2

∣∣4]
=

(
3

ε4.β4

)
.

(
1

M2

)
+

(
6

ε4.β4

)
.

(
1

M3

)
, (46)

hence, we obtain the following limited bound:

∞∑
M=1

Pr
{∣∣WM − 2σ2

∣∣ > ε
}
≤ 3

ε4.β4

∞∑
M=1

1

M2
+

6

ε4.β4

∞∑
M=1

1

M3

=
3

ε4.β4
.
π2

6
+

6

ε4.β4
.ζ (3) <∞ .
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(47)

As a result of (47), the series
∑∞

M=1 Pr
{∣∣WM − 2σ2

∣∣ > ε
}

always converges
and therefore the proof is completed.

3.4 Final remark

As the final note here we comment on the practical importance of the
new proposed convergence results. At first, we should note that the whole
massive MIMO success almost relies on the channel hardening and favor-
able propagation properties which are known as two limiting results. In
the literature it is accepted that almost sure convergence is tight enough in
practice for massive MIMO and nobody has even challenged this accepted
rule-of-thumb. Considering that massive MIMO with very large antenna
array might be implemented in very sensitive applications, e.g., in wireless
surgeries, one needs to be fully confident that the favorable propagation
condition and channel hardening always hold. Almost sure convergence
does not guarantee that these two properties never break down. According
to the definition of almost sure convergence (Eq. (14)) and Remark 2, it
is probable to encounter finite number of situations that the almost sure
convergence does not hold. From an obsessive point of view, much tighter
convergence is required to prove the eligibility of massive MIMO wireless
communication system for those sensitive applications. We think the com-
plete convergence is a stronger convergence result which may be useful in
this context.

4 Conclusions

The channel hardening and favorable propagation properties in massive
MIMO cellular systems are two basic important limiting results which are
utilized in the development of many communications systems protocols. In
this paper, we first studied a.s. convergence results for these limiting prop-
erties when wireless channels are subject to uncorrelated Rayleigh fading
(Lemmas 1 and 2). We then proposed new convergence results in terms of
the complete convergence (Theorems 1 and 2). The proofs are based on
the exact calculation of higher order moments of radio channel gains up
to order eight. The proposed proofs provide a stronger convergence result
than the almost sure convergence, and hence it is expected to be utilized
in future performance analysis of massive MIMO communications systems.
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