
On the Sin-G class of distributions:

theory, model and application

Luciano Souza†, Wilson Rosa de O. Júnior†, Cicero Carlos R. de Brito‡,

Christophe Chesneau§∗, Tiago A.E. Ferreira† and Lucas G. M. Soares†

†PPGBEA, Universidade Federal Rural de Pernambuco, Recife/PE, Brazil
‡Instituto Federal da Pernambuco, Pernambuco/PE, Brazil
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Abstract. This paper is devoted to the study of the Sin-G class of distri-
butions and one of its special member. We first explore the mathematical
properties of the Sin-G class, giving the cumulative and probability den-
sity functions and their expansions, quantile function, moments, moment
generating function, reliability parameter, Rényi entropy and order statis-
tics. Then, we focus our attention on the special member defined with the
Inverse Weibull distribution as baseline, denoted by SinIW. The mathe-
matical and practical aspects of the SinIW distribution are investigated.
In order to illustrate the usefulness of the SinIW model, an application to
real life data set is carried out.

Keywords: classes of trigonometric sine distributions, inverse Weibull distribution,

maximum likelihood estimation, data analysis.
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1 Introduction

Univariate distributions are usually derived in three ways: by solving dif-
ferential equations in the style developed by Pearson, by translating and
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scaling or by generating and inverting quantile functions (see [16]). How-
ever, there is still a great need for more flexible models in several areas
such as genetics, medicine, agronomy, engineering, economics, among oth-
ers. Thus, the statisticians aim to construct models that are able to provide
a better explanation of the phenomenon studied, so we can have a better
understanding of the factors involved, as well as in the development of
better predictions.

Most of the statistical models proposed in the literature have a large
number of parameters in an attempt to make the model more flexible. Ac-
cording to some authors, these estimates are difficult to obtain by means
of numerical resources. It is desirable however to develop models that
have a small number of parameters and, at the same time, with a large
degree of flexibility for modelling the data. In order to reach this aim,
few researchers decided to seek new distributions using trigonometric func-
tions. [5] was one of the first to suggest a sine distribution, [10] proposed a
distribution that bears his name Gilbert Sine distribution), [22] proposed
the Beta Trigonometric (Beta-T) distribution, [2] proposed the Square Sine
distribution and, more recently, [15] introduced the Sine exponential dis-
tribution, special member of the so-called Sin-G class of distributions.

To the best of our knowledge, the Sin-G class has been simultaneously
introduced by [15] and [29] via techniques developed by [4]. However, in
the present literature, there is no published work on its mathematical and
practical properties, in full generality. This surprising gap is one motiva-
tion of this paper. By adopting the general setting of the Sin-G class, we
derive the mean, variance, general coefficient, skewness, kurtosis, moments,
moment generating function, reliability, Rényi entropy and order statistics.
Then, in order to illustrate the applicability of the Sin-G class, we con-
sider the special member defined with the Inverse Weibull distribution as
baseline, and denoted by SinIW. By applying the established results of the
Sin-G class, we derive the main properties of the SinIW distribution. Then,
it is considered as a parametric model, with estimation of the parameters
via the maximum likelihood method. A Monte Carlo simulation study is
performed to assess maximum likelihood estimates. In order to illustrate
the potentiality of the SinIW model, we provide an application about the
analysis of a real data set.

The rest of the paper is organized as follows. Section 2 presents the Sin-
G class of distributions and explores its main properties. The estimation
of the parameters for the general model is presented in Section 3. The
SinIW distribution is introduced in Section 4, including its mathematical
and practical properties. An application to a real data set is given in Section
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5. Some concluding remarks ends the study in Section 6.

2 On the Sin-G class

This section is devoted to the definition and the main mathematical prop-
erties of the Sin-G class of distributions.

2.1 Definition

The Sin-G class proposed here is characterized by the cumulative distribu-
tion function (cdf) given by

HG(x; ξ) =

∫ π
2
G(x;ξ)

0
cos(t)dt = sin

[π
2
G(x; ξ)

]
, x ∈ R, (1)

whereG(x; ξ) is an arbitrary baseline cdf of a continuous distribution, which
depends on a parameter vector ξ. As mention in Introduction, to the best
of our knowledge, the Sin-G class finds trace in [15] and [29]. However,
there is no published work on its general properties, which is the goal if
this section.

The probability density function (pdf) corresponding to the Sin-G class
is given by

hG(x; ξ) =
π

2
g(x; ξ) cos

[π
2
G(x; ξ)

]
, x ∈ R, (2)

where g(x; ξ) denotes the pdf corresponding to G(x; ξ).
The corresponding hazard rate function (hrf) is given by

RG(x; ξ) =
hG(x; ξ)

1−HG(x; ξ)
=

π

2
g(x; ξ) cos

[π
2
G(x; ξ)

]
1− sin

[π
2
G(x; ξ)

] , x ∈ R.

Hereafter, to lighten the notations, the dependence on the parameter
vector ξ will be sometimes omitted and we will simply writeG(x) = G(x; ξ),
HG(x; ξ) = HG(x), hG(x; ξ) = hG(x) and RG(x; ξ) = RG(x).

2.2 Some shape properties

Here, we study the critical points of hG(x) and RG(x), as well as some
asymptotic properties of these functions. The critical points of hG(x) are
the roof of the equation: h′G(x) = 0, with

h′G(x) =
π

2
g′(x)

{
cos
[π

2
G(x)

]
− π

2
g(x) sin

[π
2
G(x)

]}
.
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So, a root of this equation, say x∗, satisfies g′(x∗) = 0 or cot
[π

2
G(x∗)

]
=

π

2
g(x∗). Moreover, x∗ corresponds to a local maximum if τ(x∗) < 0, a

local minimum if τ(x∗) > 0 or a point of inflection if τ(x∗) = 0, where
τ(x) = h′′G(x). Similarly, the the critical points of RG(x) are the roof of the
equation: R′G(x) = 0, with

R′
G(x) =

π

2
g′(x)

{
cos
[π

2
G(x)

]
− π

2
g(x) sin

[π
2
G(x)

]}
+

π

2
g(x) cos

[π
2
G(x)

]
1− sin

[π
2
G(x)

] .

We can also examine the nature of each of the obtained roots, say x∗∗,
according to the sign of the function υ(x) = R′′G(x∗∗). Some asymptotic
results for hG(x) and RG(x) are given below. When G(x)→ 0, we have

hG(x) ∼ π

2
g(x), RG(x) ∼ π

2
g(x).

When G(x)→ 1, we have

hG(x) ∼ π2

4
g(x)(1−G(x)), RG(x) ∼ 2

g(x)

1−G(x)
.

It is shown in this study that the Sin-G class can deal with general
situations in modeling survival data with various shapes of RG(x).

2.3 Quantile function

The quantile function (qf) of the Sin-G class follows by inverting the Sin-G
cdf. It can be expressed in terms of inverse sine function (arcsine function)
as

QG(u) = G−1
[

2

π
arcsin(u)

]
, u ∈ (0, 1). (3)

Hence, the Sin-G class of distributions can be easily simulated and a gen-
erator of a random variable X having the Sin-G cdf can be given by con-
sidering random variable U following the uniform distribution U(0, 1) and
X = QG(U). Also, the qf can be used to defined the standard quartiles
(including the median), the octiles, as well as, several measures of skew-
ness and kurtosis. Another useful function derived to QG(u) is the quantile
density function obtained by differentiation of QG(u) (see [25]). After some
algebra, it is given by

qG(u) =
2

π
√

1− u2
1

g

{
G−1

[
2

π
arcsin(u)

]} , u ∈ (0, 1).



On the Sin-G class of distributions: theory, model and application 361

2.4 Some linear expansions

Useful linear expansions can be derived using the concept of exponentiated
distributions. For an arbitrary baseline cdf G(x), with pdf denoted by g(x),
the exponentiated-G (exp-G) distribution with power parameter a > 0 is
characterized by the cdf given by

Ga(x) = G(x)a, x ∈ R. (4)

The corresponding pdf is given by

ga(x) = ag(x)G(x)a−1, x ∈ R.

These notations will be adopt in the next. The properties of the exponen-
tiated distributions are well-known for a wide variety of baseline cdfs G(x).
We refer to [20], [23], [7] and [17], among others.

The following result presents linear representations of HG(x) and hG(x)
in terms of exp-G functions.

Proposition 1. We have the following linear representations:

HG(x) =
+∞∑
k=0

skG2k+1(x), hG(x) =
+∞∑
k=0

skg2k+1(x), (5)

where sk =
(−1)k

(2k + 1)!

(π
2

)2k+1
, G2k+1(x) denotes the exp-G cdf with pa-

rameter (2k + 1) and g2k+1(x) denotes the corresponding pdf.

Proof. By writing the sine function via its Taylor series, we have

HG(x) = sin
[π

2
G(x)

]
=

+∞∑
k=0

(−1)k

(2k + 1)!

[π
2
G(x)

]2k+1
=

+∞∑
k=0

skG2k+1(x).

We obtain the desired linear expansion for hG(x) by differentiation of the
previous function.

So, from Proposition 1, several mathematical properties of the Sin-G
class can be obtained by knowing those of the exp-G distribution. The for-
mulas derived throughout the paper can be easily handled in most computer
algebra systems such as MAPLE, MATLAB and MATHEMATICA. These
platforms have currently the ability to deal with complex analytic expres-
sions. Established explicit expressions to calculate statistical measures can
be more efficient than computing them directly by numerical integration.
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In practical terms, we can substitute ∞ in the sums by a large positive
integer such as 30 or 40 for most practical purposes.

Hereafter, we consider a random variable X having the Sin-G cdf, i.e.,
given by (1). Also, we suppose the existence of all the presented integrals
and sums. It is also assumed that the required conditions to apply the dom-
inated convergence theorem hold, which is useful to justify the interchange
of integral and sum signs.

2.5 On the moments

The m-th moment of X is given by

µm = E(Xm) =

∫ +∞

−∞
xmhG(x)dx.

A linear representation for µm is proposed below. Hereafter, for any integer
k, we consider a random variable Y2k+1 having the cdf G2k+1(x) (and the
pdf g2k+1(x)). It follows from (5) and the interchanged of the integral and
sum signs that

µm =
+∞∑
k=0

skE
(
Y m
2k+1

)
.

In particular, the mean of X is given by taking m = 1, i.e., µ = µ1 and
the variance of X is given by σ2 = µ2 − µ2.

The m-th factorial moment is given by

µ(m) = E [X(X − 1)(X −m+ 1)] =

∫ +∞

−∞
x(x− 1)(x−m+ 1)hG(x)dx.

By using the Taylor series, we have

µ(m) =
m∑
k=0

s∗(m, k)µk,

where s∗(m, k) =
1

k!
[x(x− 1) . . . (x−m+ 1)](k) |x=0.

The m-th central moment of X is given by

µ′m = E[(X − µ)m] =

∫ +∞

−∞
(x− µ)mhG(x)dx.

By using the binomial theorem, it can be expressed via moments as

µ′m =

m∑
r=0

(
m

r

)
(−1)m−rµm−rµr,
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where

(
m

r

)
=

m!

r!(m− r)!
. We rediscover the variance of X by taking

m = 2, i.e., σ2 = µ′2. Also, the skewness and kurtosis coefficients of X are,
respectively given by

S = E

[(
X − µ
σ

)3
]

=
µ′3
σ3
, K = E

[(
X − µ
σ

)4
]

=
µ′4
σ4
.

The moment generating function (mgf) of X is given by

MX(t) = E(exp(tX)) =

∫ +∞

−∞
exp(tx)hG(x)dx.

It follows from (5) and the interchanged of the integral and sum signs that

MX(t) =

+∞∑
k=0

skMY2k+1
(t),

where MY2k+1
(t) denotes the mgf of Y2k+1.

The characteristic function of X as well as incomplete moments of X
can be expressed in a similar manner.

2.6 Reliability parameter

We now investigate the reliability of the Sin-G class following the concept
described in [14]. Let ξ1 and ξ2 be two parameter vectors. Let X1 be
a random variable having the cdf given by (1) with baseline cdf given by
G(x; ξ1), with pdf denoted by h1(x), and X2 be a random variable having
the cdf given by (1) with baseline cdf given by G(x; ξ2), with cdf denoted
by H2(x). We suppose that X1 and X2 are independent. Then, a measure
of reliability is given by the parameter R defined by

R = P (X2 < X1) =

∫ +∞

−∞
h1(x)H2(x)dx.
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An alternative linear representation of R is given below. It follows from (5)
and the interchanged of the integral and sum signs that

R =

∫ +∞

−∞

[
+∞∑
k=0

skg2k+1(x; ξ1)

]
×

+∞∑
q=0

sqG2q+1(x; ξ2)

 dx
=

+∞∑
k=0

+∞∑
q=0

sksq

∫ +∞

−∞
g2k+1(x; ξ1)G2q+1(x; ξ2)dx

=

+∞∑
k=0

+∞∑
q=0

sksq(2k + 1)

∫ +∞

−∞
g(x; ξ1)G(x; ξ1)

2kG(x; ξ2)
2q+1dx.

The integral can be computed numerically for given G(x; ξ1) and G(x; ξ2).
One can observe that, if there exists υ > 0 such that G(x; ξ2) = G(x; ξ1)

υ

(corresponding to the exponentiated case with parameter υ > 0), then R
is reduced to

R =
+∞∑
k=0

+∞∑
q=0

sksq
2k + 1

2k + 1 + υ(2q + 1) + 1
.

One can notice that R does not depend on the baseline distribution. We
can check that, in the identically distributed case, i.e., υ = 1, we have
R = 1

2 .

2.7 Rényi entropy

The entropy of a distribution is a measure of uncertainty; the greater the
entropy, the higher the disorder and less likely to observe a given event; the
lower the entropy, the lower its disorder and the higher the probability of
observing a particular event. In this section, we focus on one of the most
useful entropy: the Rényi entropy (see [27]). For the Sin-G class, the Rényi
entropy is given by

LR,G(γ) =
1

1− γ
log

[∫ +∞

−∞
hG(x)γdx

]
=

1

1− γ
log

[∫ +∞

−∞

(π
2

)γ
g(x)γ

{
cos
[π

2
G(x)

]}γ
dx

]
,

where γ > 0 and γ 6= 1. We now derive an alternative sum expression for

LR,G(γ). By considering the Taylor series of the function
{

cos
[π

2
s
]}γ

at
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the point s = 1
2 , we can write

{
cos
[π

2
s
]}γ

=
+∞∑
k=0

k∑
r=0

ak

(
k

r

)
(−1)k−r

(
1

2

)k−r
sr,

where ak =
1

k!

[{
cos
[π

2
s
]}γ](k)

|s= 1
2
.

After some algebra and the interchange of the integral and sum signs,
we obtain

LR,G(γ) =
1

1− γ

{
γ log

(π
2

)
+ log

[
+∞∑
k=0

k∑
r=0

ak

(
k

r

)
(−1)k−r

(
1

2

)k−r
Ur

]}
,

where Ur =
∫ +∞
−∞ g(x)γG(x)rdx. In most of the cases, Ur can be computed

at least numerically.

2.8 Order statistics

Order statistics make their appearance in many areas of statistical theory
and practice. Here, we investigate some of distributional properties of the
i-th order statistic from the Sin-G class. Let X1, . . . , Xn be n random
variables, i.i.d., having the common Sin-G cdf given by (1). Then, the pdf
of the i-th order statistic is given by

fi:n(x) =
1

B(i, n− i+ 1)
hG(x)HG(x)i−1 [1−HG(x)]n−i , x ∈ R,

where B(i, n− i+ 1) =
(i− 1)!(n− i)!

n!
. By using the binomial formula and

the linear representations given by (5), we get

fi:n(x) =
1

B(i, n− i+ 1)

n−i∑
j=0

(
n− i
j

)
(−1)jhG(x)HG(x)j+i−1

=
1

B(i, n− i+ 1)

n−i∑
j=0

(
n− i
j

)
(−1)j

[
+∞∑
k=0

skg2k+1(x)

]

×

+∞∑
q=0

sqG2q+1(x)

j+i−1 .
For the expansion of the last term, one can use Taylor series. A more
elegant approach is to use [11, Result 0.314]. This result says that, for a
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positive integer v, a sequence of real numbers (ak)k∈N and y ∈ R, we have[
+∞∑
m=0

amy
m

]v
=

+∞∑
m=0

dv,my
m,

where dv,0 = av0 and, for any m ≥ 1,

dv,m =
1

ma0

m∑
`=1

[`(v + 1)−m]a`dv,m−`.

Therefore, by taking y = G(x)2, we have+∞∑
q=0

sqG2q+1(x)

j+i−1 = G(x)j+i−1

+∞∑
q=0

sq
{
G(x)2

}qj+i−1

=
+∞∑
q=0

dj+i−1,qG2q+j+i−1(x),

where dj+i−1,0 = sj+i−10 and, for any q ≥ 1,

dj+i−1,q =
1

qs0

q∑
`=1

[`(j + i)− q]s`dj+i−1,q−`.

By putting the above equalities together, we get

fi:n(x)

=
1

B(i, n− i+ 1)

n−i∑
j=0

+∞∑
k=0

+∞∑
q=0

(
n− i
j

)
(−1)jskdj+i−1,qg2k+1(x)G2q+j+i−1(x)

=
+∞∑
k=0

+∞∑
q=0

ωk,q,n,ig2k+2q+j+i(x),

where

ωk,q,n,i =
1

B(i, n− i+ 1)

n−i∑
j=0

(
n− i
j

)
(−1)jskdj+i−1,q

2k + 1

2k + 2q + j + i
.

From this linear representation, combination of exp-G pdfs, several
mathematical quantities can be expressed. For instance, by introducing
a random variable Y2k+2q+j+i having the pdf g2k+2q+j+i(x), the m-th mo-
ment of Xi:n can be expressed as

E(Xm
i:n) =

∫ +∞

−∞
xmfi:n(x)dx =

+∞∑
k=0

+∞∑
q=0

ωk,q,n,iE(Y m
2k+2q+j+i).
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3 Estimation

Under some regularity conditions, the maximum likelihood estimates (MLEs)
of the model parameters can be obtained by equating the derivative of the
log-likelihood function with respect to each parameter to zero. In this sec-
tion, we determine the MLEs of the Sin-G model parameters from complete
samples only. Let x̃ = x1, . . . , xn be a random sample from a random vari-
able X having the Sin-G cdf given by (1), where ξ denotes a vector of
unknown parameters in the baseline distribution G(x; ξ). Let Θ = (ξ)> be
the p × 1 parameter vector. Then, the total log-likelihood function for Θ
is given by

`(Θ) = n log
(π

2

)
+

n∑
i=1

log [g(xi; ξ)] +
n∑
i=1

log
{

cos
[π

2
G(xi; ξ)

]}
.

We assume that the following standard regularity conditions for the log-
likelihood `(Θ) hold: i) The support of X does not depend on unknown
parameters; ii) The parameter space of X, say Ψ, is open and `(Θ) has a
global maximum in Ψ; iii) For almost all x̃, the fourth-order log-likelihood
derivatives with respect to the model parameters exist and are continuous
in an open subset of Ψ that contains the true parameter; iv) The expected
information matrix is positive definite and finite; v) The absolute values
of the third-order log-likelihood derivatives with respect to the parameters
are bounded by expected finite functions of X.

The k-th component of the score function U(Θ) = (Uξ)> is given by

Uξk =

n∑
i=1

∂g(xi; ξ)/∂ξk
g(xi; ξ)

− π

2

n∑
i=1

∂G(xi; ξ)

∂ξk
tan

[π
2
G(xi; ξ)

]
.

For interval estimation, we require the p× p observed information matrix.
The (k, l)-th element of this matrix is given by −Uξk,ξl , where

Uξk,ξl =

n∑
i=1

∂2g(xi; ξ)/∂ξk∂ξl
g(xi; ξ)

− π

2

n∑
i=1

∂2G(xi; ξ)

∂ξk∂ξl
tan

[π
2
G(xi; ξ)

]
−

n∑
i=1

[∂g(xi; ξ)/∂ξk][∂g(xi; ξ)/∂ξl]

g(xi; ξ)2

− π2

4

n∑
i=1

{
sec
[π

2
G(xi; ξ)

]}2
{
∂g(xi; ξ)

∂ξk

}{
∂g(xi; ξ)

∂ξl

}
.
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4 Particular case: the SinIW distribution

In this section, we examine a particular distribution of the Sin-G class
defined with the Inverse Weibull (IW) cdf G(x) as baseline. From a math-
ematical point of view, if a random variable Y has the Weibull distribution

with parameters α > 0 and θ > 0, then X =
1

Y
has the IW distribution

with parameters α and θ, and its cdf is given by

G(x) = exp(−αx−θ), x > 0. (6)

The corresponding pdf takes the form

g(x) = αθx−θ−1 exp(−αx−θ), x > 0.

Also, the corresponding hrf is given by

h(x) = αθ
x−θ−1

exp(αx−θ)− 1
, x > 0

and presents unimodal form. The IW distribution has received much at-
tention in the literature due to undeniable merits. For instance, in [13], the
IW distribution is introduced to describe the degeneration phenomena of
mechanical components. The IW distribution also provides a good fit to
several kinds of data such as the breakdown times of an insulating fluid,
subject to the action of constant tension (see [24]). This distribution is
also called Reverse Weibull distribution (see [28]), Additional Weibull dis-
tribution (see [9]) and the Reciprocal Weibull distribution (see [19]). Some
order statistics properties of the IW distribution are derived in [1]. In [6],
the maximum likelihood and least square estimations of parameters are
discussed. Some authors have introduced variations of the IW distribution
such as [12] who proposed a generalization (exponentiated form) of the IW
distribution: the generalized model, also known as reversed Weibull, has
the IW distribution as particular case, and is thus more flexible.

The new proposed distribution is created by applying the Sin-G trans-
form class to the IW distribution. It is called the Sine Inverse Weibull
distribution, and denoted by SinIW for the purpose of this study. Thus,
the cdf of the SinIW distribution is defined from (1) by taking G(x) given
by (6), i.e.,

HIW (x) = sin
[π

2
exp(−αx−θ)

]
, x > 0.

The corresponding pdf is given by

hIW (x) =
π

2
αθx−θ−1 exp(−αx−θ) cos

[π
2

exp(−αx−θ)
]
, x > 0.
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The corresponding hrf is given by

RIW (x) =

π

2
αθx−θ−1 exp(−αx−θ) cos

[π
2

exp(−αx−θ)
]

1− sin
[π

2
exp(−αx−θ)

] , x > 0.

Figure 1 displays some plots of the SinIW pdf and cdf for some selected
values of α and θ. Also, the hrf and the survival function (sf), i.e., SIW (x) =
1 − HIW (x), for selected parameter values are shown in Figure 2. The
importance of the hrf is to be quite flexible for modeling survival data.
Indeed, for selected parameter values, the SinIW hrf can have, for example,
decreasing and inverted-bathtub forms. As the IW distribution is very
useful in modeling failure rates, the new distribution also proved to be very
flexible in the modeling of these type of data (as this will be developed in
Section 5). Then, the SinIW model has greater applicability to problems
in the biological area, since most of these problems have unimodal failure
rate.
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Figure 1: Plots of the SinIW pdf and cdf for some parameter values.

Using similar arguments to those used for the Sin-G cdf and pdf expan-
sions, the SinIW cdf and pdf can be rewritten as a sum of exponentiated
IW functions as follows:

HIW (x) =

+∞∑
k=0

skG2k+1(x), hIW (x) =

+∞∑
k=0

skg2k+1(x). (7)

Using (7), it is possible to simply obtain some measures of the SinIW
distribution by using those of exponentiated IW distribution. Properties
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Figure 2: Plots of the SinIW hrf and sf for some parameter values.

such as moments, central moments, variance, skewness, kurtosis and mgf
are summarized in Table 1, where Γ(x) denotes the gamma function defined
by Γ(x) =

∫ +∞
0 yx−1 exp(−y)dy, x > 0, and, for the sake of space, we have

set

bk,r(m) =

(
m

r

)
(−1)m−rµm−rsk(2k + 1)

r
θα

r
θΓ
(

1− r

θ

)
(assuming that θ > r) and

Ur = (αθ)γ−1(r + γ)−
(θ+1)(γ−1)

θ
−1α−

(θ+1)(γ−1)
θ Γ

(
(θ + 1)(γ − 1)

θ
+ 1

)
.

These explicit expressions were obtained from the results found in Section
2.

4.1 Maximum likelihood estimation

In this section, we derive the MLEs of the unknown parameters α and θ
of the SinIW model. Let x1, . . . , xn be a sample of size n from the SinIW
distribution. Then, the log-likelihood function for the vector of parameter
Θ = (α, θ)> can be expressed as

`(Θ) = n log
(π

2

)
+ n log (αθ)− (θ + 1)

n∑
i=1

log(xi)

−
n∑
i=1

αx−θi +
n∑
i=1

log
{

cos
[π

2
exp(−αx−θi )

]}
.
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Table 1: Some structural properties for the SinIW distribution.

Measures Explicit expressions

qf

{
− 1

α
log

[
2

π
arcsin(u)

]}− 1
θ

Moments

+∞∑
k=0

sk(2k + 1)
m
θ α

m
θ Γ
(

1 − m

θ

)
Central moments

+∞∑
k=0

m∑
r=0

bk,r(m)

Variance

+∞∑
k=0

2∑
r=0

bk,r(2)

Skewness

+∞∑
k=0

3∑
r=0

bk,r(3)

[
+∞∑
k=0

2∑
r=0

bk,r(2)

] 3
2

Kurtosis

+∞∑
k=0

4∑
r=0

bk,r(4)[
+∞∑
k=0

2∑
r=0

bk,r(2)

]2
mgf

+∞∑
k=0

+∞∑
m=0

sk
tm

m!
(2k + 1)

m
θ α

m
θ Γ
(

1 − m

θ

)
Rényi entropy

1

1 − γ

{
γ log

(π
2

)
+ log

[
+∞∑
k=0

k∑
r=0

ak

(
k

r

)
(−1)k−r

(
1

2

)k−r
Ur

]}

The elements of the score vector U(Θ) are given by

Uα =
n

α
−

n∑
i=1

x−θi +
π

2

n∑
i=1

x−θi exp(−αx−θi ) tan
[π

2
exp(−αx−θi )

]
and

Uθ =
n

θ
−

n∑
i=1

(1− αx−θi ) log (xi)

− απ

2

n∑
i=1

x−θi log (xi) exp(−αx−θi ) tan
[π

2
exp(−αx−θi )

]
·

The MLEs of α and θ are obtained by solving simultaneously the equa-
tions: Uα = 0 and Uθ = 0. Then, under standard regularity assumptions,
all the guaranties of convergence of the MLEs hold, including asymptotic
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normality, allowing the interval and test estimations. One of the main tool
to construct these mathematical object is the observed information matrix
given by

J(Θ) = −
(
Uα,α Uα,θ
. Uθ,θ

)

where Uα,α =
∂2

∂α2
`(Θ), Uα,θ =

∂2

∂α∂θ
`(Θ) and Uθ,θ =

∂2

∂θ2
`(Θ). These

components are expressible by using any symbolic software.

4.2 Numerical evaluation of the MLE bias

Using the SinIW R package developed by [30], we produce samples for
many parameter combinations of the SinIW distribution, and calculated
the MLEs for each sample (via the [26] standard optim implementation of
the BFGS algorithm). This allows us to test difficulties in parameter esti-
mation such as sharpness or flatness of the likelihood function, and provides
estimates for the size and direction (underestimate or overestimate) of the
MLEs bias.

The simulation uses samples with sizes 10, 100 and 1000, and explored
the parameter space (α, θ) ∈ Θ = {0.5, 1, 1.5}×{0.5, 0.85, 1}. We produced
10 000 replicas for each combination of parameters values and sample size
and took the mean of the results. Table 2 summarizes the experiment,
showing average estimate for each parameter, bias for each parameter and
relative (percentual) bias for each parameter. One can see that α is consis-
tently underestimated and θ is consistently overestimated by the maximum
likelihood method.

Table 3 presents some useful statistics in order to understand the over-
all simulation process. Variance estimates are obtained by inverting the
estimated Heassian matrix, and the distance between the empirical density
and the estimated density is represented by the Kolmogorov-Smirnov (KS)
statistic. On this table the sample size effect is clear: the variances and the
KS statistic are smaller for the larger sample size.

5 Application

Here, we use the SinIW model in an application to a real data set. We
shall compare to exponentiated Weibull distribution introduced by [18], the
Beta exponential distribution proposed by [21] and the Weibull distribution
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Table 2: Numerical evaluation of the maximum likelihood bias for the
SinIW distribution.

n α θ α̂ θ̂ b(α) b(θ) b(α)/α b(θ)/θ
0.70 0.461 0.878 -0.039 0.178 -24.442 15.1060.50
0.85 0.471 1.017 -0.029 0.167 -22.762 11.292
1.00 0.487 1.159 -0.013 0.159 -18.688 8.709

0.70 0.691 1.072 -0.309 0.372 -59.571 30.398
10 1.00

0.85 0.748 1.240 -0.252 0.390 -46.977 27.261
1.00 0.801 1.395 -0.198 0.395 -37.616 24.050

0.70 0.931 1.268 -0.569 0.568 -74.834 40.873
1.50

0.85 1.019 1.456 -0.480 0.697 -60.864 37.803
1.00 1.105 1.623 -0.395 0.625 -49.046 34.463

0.70 0.492 0.754 -0.008 0.054 -2.482 6.661
0.50

0.85 0.496 0.889 -0.004 0.039 -1.685 3.942
1.00 0.506 1.022 -0.006 0.022 0.279 1.727

0.70 0.696 0.919 -0.304 0.219 -44.529 23.513
100 1.00

0.85 0.743 1.073 -0.257 0.223 -35.519 20.425
1.00 0.789 1.210 -0.211 0.210 -27.573 16.984

0.70 0.899 1.075 -0.601 0.375 -67.739 34.501
1.50

0.85 0.973 1.241 -0.527 0.391 -54.999 31.108
1.00 1.042 1.392 -0.458 0.392 -44.815 27.800

0.70 0.495 0.743 -0.005 0.043 -1.119 5.750
0.50

0.85 0.499 0.878 -0.001 0.028 -0.256 3.168
1.00 0.509 1.010 -0.009 0.010 -1.730 0.978

0.70 0.698 0.908 -0.302 0.208 -43.390 22.897
1000 1.00

0.85 0.746 1.057 -0.254 0.207 -34.194 19.590
1.00 0.790 1.195 -0.209 0.195 -26.571 16.311

0.70 0.897 1.057 -0.603 0.357 -67.342 33.772
1.50

0.85 0.972 1.223 -0.528 0.373 -54.478 30.450
1.00 1.039 1.373 -0.460 0.373 -44.345 27.109

introduced by [31]. The corresponding pdfs are, respectively, given by

fEW (x) = α
k

λ

(x
λ

)k−1 [
1− exp

(
−x
λ

)k]
exp

(
−x
λ

)k
, x > 0,
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Table 3: General goodness of fit statistics for the simulations related to the
SinIW distribution.

n α θ V ar(α) V ar(θ) KS Distance
0.70 0.169 0.202 0.1890.50
0.85 0.171 0.235 0.187
1.00 0.175 0.269 0.184

0.70 0.212 0.245 0.194
10 1.00

0.85 0.223 0.285 0.190
1.00 0.233 0.322 0.189

0.70 0.256 0.288 0.198
1.50

0.85 0.273 0.333 0.195
1.00 0.291 0.373 0.193

0.70 0.056 0.053 0.084
0.50

0.85 0.056 0.063 0.077
1.00 0.507 0.073 0.073

0.70 0.057 0.064 0.092
100 1.00

0.85 0.067 0.076 0.086
1.00 0.069 0.086 0.081

0.70 0.072 0.074 0.102
1.50

0.85 0.078 0.087 0.096
1.00 0.081 0.097 0.089

0.70 0.086 0.016 0.055
0.50

0.85 0.018 0.019 0.047
1.00 0.021 0.023 0.041

0.70 0.022 0.020 0.064
1000 1.00

0.85 0.022 0.023 0.057
1.00 0.024 0.027 0.051

0.70 0.022 0.023 0.076
1.50

0.85 0.026 0.027 0.068
1.00 0.027 0.030 0.061

fBE(x) =
λ

B(a, b)
exp(−bλx) [1− exp(−λx)]a−1 , x > 0,

and

fW (x) = αλαxα−1 exp [−(λx)α] , x > 0.

Also, let let mention that all the introduced parameters are strictly
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positive. The considered data set is from [3]. It contains 72 observations
representing the survival times in days of guinea pigs injected with different
doses of tubercle bacilli. The data are listed in Table 4. Table 5 displays
some descriptive statistics of the data.

Table 6 presents the MLEs of the parameters (standard errors in paren-
theses). We see that the SinIW model, when compared to others, provided
better statistics, specially with the BIC and Anderson-Darling (A∗) (see [8])
and Cramér - von Mises (W ∗). Thus, we conclude that the SinIW model is
quite flexible in the modeling of the proposed data. Also, Figure 3 suggests
an excellent fit to the data distribution to the adequacy of the data.

Table 4: Guinea Pigs Data.

12 15 22 24 24 32 32 33 34 38 38 43 44 48
52 53 54 54 55 56 57 58 58 59 60 60 60 60
61 62 63 65 65 67 68 70 70 72 73 75 76 76
81 83 84 85 87 91 95 96 98 99 109 110 121 127

129 131 143 146 146 175 175 211 233 258 258 263 297 341
341 376

Table 5: Descriptive statistics.

Min. Q1 Median Mean Q3 Max. Var.
12.00 54.75 70.00 99.82 112.80 376.00 6580.122

Table 6: Estimates of the considered models for Guinea Pigs Data.

Distributions Estimates AIC BIC CAIC HQIC A∗ W ∗

SinIW (α, θ) 115.12 1.09 – 787.66 792.21 787.83 789.47 0.81 0.14
(41.96) (0.09) –

EW (α, k, λ) 10.04 0.57 13.58 786.73 793.56 787.09 789.45 0.89 0.17
(6.39) (0.12) (10.49)

BE (a, b, λ) 3.64 0.30 0.05 788.26 795.09 788.62 790.98 1.12 0.21
(1.17) (0.09) (0.01)

W (α, λ) 1.39 0.01 – 798.29 802.84 798.47 800.11 2.39 0.43
(0.12) (0.00) –
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Figure 3: Some estimated fitted densities of the data.

6 Concluding remarks

We proposed a new class of trigonometric distribution, the Sin-G class, and
a new distribution in this class, the Sine Inverse Weibull distribution, de-
noted by SinIW distribution. We obtain the probability density function,
cumulative density function and their expansions, quantile function, mo-
ments, moment generating function, reliability parameter, Rényi entropy
and order statistics. By considering the SinIW model, the parameters are
estimated via the maximum likelihood method. Plots of the estimated pdf
and cdf indicate that SinIW model is superior to the other considered mod-
els. In particular, In Figure 3, we can see that this model can help in the
analysis of survival data, as well as in other areas of knowledge.
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