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Abstract. In this paper, we introduce new applicable approximations for
Gaussian type integrals. A key ingredient is the approximation of the func-
tion e−x

2
by the sum of three simple polynomial-exponential functions.

Five special Gaussian type integrals are then considered as applications.
Approximation of the so-called Voigt error function is investigated.
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1 Motivation

Gaussian type integrals play a central role in various branches of mathemat-
ics (probability theory, statistics, theory of errors . . . ) and physics (heat
and mass transfer, atmospheric science . . . ). The most famous example of
this class of integrals is the Gauss error function defined by

erf(y) =
2√
π

∫ y

0
e−x

2
dx.

As for the erf(y), plethora of useful Gaussian type integral have no an-
alytical expression. For this reason, a lot of approximations have been
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developed, more or less complicated, with more or less precision (for the
erf(y) function, see [6] and the references therein).

In this paper, we aim to provide acceptable and applicable approxi-
mations for possible sophisticated Gaussian type integrals. We follow the
simple approach of [1] which consists in expressing the function e−x

2
as a

finite sum of N functions having a more tractable polynomial-exponential
form: αn|x|ne−βn|x|, where αn and βn are real numbers and n ∈ {0, . . . , N},
i.e.,

e−x
2 ≈

N∑
n=0

αn|x|ne−βn|x|.

The challenge is to choose α0, . . . , αN and β0, . . . , βN such that the rest
function

ε(x) = e−x
2 −

N∑
n=0

αn|x|ne−βn|x|

is supposed to be small: |ε(x)| � 1. With such a choice, for a function
g(x, t), the following approximation is acceptable:∫ +∞

−∞
g(x, t)e−x

2
dx ≈

N∑
n=0

αn

∫ +∞

−∞
|x|ne−βn|x|g(x, t)dx,

assuming that the integrals exist and with the idea in mind that the inte-
gral terms in the sum have analytical expressions. Considering N = 1, it
is shown in [1] that, for γ = 2.75, we have e−x

2 ≈ e−2γ|x| + 2γ|x|e−γ|x|, so
α0 = 1, α1 = 2γ, β0 = 2γ, β1 = γ. With this set of coefficients, [1] shown
that the rest function ε1(x) = e−x

2 −
(
e−2γ|x| + 2γ|x|e−γ|x|

)
has a reason-

ably small magnitude: |ε1(x)| < 0.032 (value obtained using the Faddeeva
Package [3] which includes a wrapper for Matlab). Using this result, [1]
shows a simple rational approximation a Gaussian type integral, named
the Voigt error function. Contrary to more accurate approximations, it has
the advantage to be simple and very useful for rapid computation when
dealing with large-scale data. In this study, we propose to explore this ap-
proach by considering an additional polynomial-exponential function, with
polynomials of degree 2; the case N = 2 is considered. We determine suit-
able coefficients α0, α1, α2 and β0, β1, β2 to obtain a rest function with a
smaller magnitude to the one of ε1(x) evaluated by [1]. We then use this
approximation to show applicable approximations for complex Gaussian
type integrals, including the Voigt error function.

This paper is organized as follows. In Section 2, we present our ap-
proximation results. Applications are given for the Voigt error function in
Section 3. Concluding remarks are given in Section 4.
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2 Gaussian integral type approximations

2.1 Approximation result

Our main result is the following approximation.

Claim. The following approximation for e−x
2

is sharp:

e−x
2 ≈

2∑
n=0

αn|x|ne−βn|x|, (1)

with α0 = 1, α1 = 4θ, α2 = 4θ2, β0 = 4θ, β1 = 3θ, β2 = 2θ and θ = 1.885.

One can notice that the definitions of α0, α1, α2, β0, β1 and β2 are such
that

e−x
2 ≈ e−4θ|x| + 4θ|x|e−3θ|x| + 4θ2x2e−2θ|x| =

(
e−2θ|x| + 2θ|x|e−θ|x|

)2
. (2)

The sharpness of our approximation can be shown in various ways. In
particular, one can show that the rest function given by

ε2(x) = e−x
2 −

(
4θ2x2e−2θ|x| + 4θ|x|e−3θ|x| + e−4θ|x|

)
has a reasonably small magnitude; we have |ε2(x)| < 0.018 (using the same
reference code). Note that the upper bound 0.018 is (near twice) smaller to
the upper bound of |ε1(x)| studied in [1]. Superposition of the rest functions
ε1(x) and ε2(x) is given in Figure 1.

We see that for a small interval around 0, the error ε1(x) is smaller to
ε2(x), but ε2(x) is globally the smallest. Indeed, we have

∫ 5
−5 |ε2(x)|dx ≈

0.05240866 with an absolute error less than 0.00012 against
∫ 5
−5 |ε1(x)|dx ≈

0.1050965 with an absolute error less than 0.00011.
Also, let us mention that exponential of a homogeneous polynomial can

be approximate in a similar way by using composition. For instance, for
e−x

4
, we can write

e−x
4 ≈

2∑
n=0

αnx
2ne−βnx

2
,≈

2∑
n=0

2∑
m=0

αnαmβ
m/2
n |x|m+2ne−βm

√
βn|x|.

2.2 Approximation of Gaussian type integrals

It follows from (1) that, for a wide class of functions g(x, t), we have the
following integral approximation:∫ +∞

−∞
g(x, t)e−x

2
dx ≈

2∑
n=0

αn

∫ +∞

−∞
|x|ne−βn|x|g(x, t)dx.
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Figure 1: Graphical comparison of ε1(x) and ε2(x).

We propose to use this result to approximate several nontrivial Gaussian
type integrals (define on the semi-finite interval (0,+∞)). Most of them
do not have a close form and do not belong to the list of Gaussian-type
integrals by [4].

Let ν > −1, µ ≥ 0 and p ≥ 0. Then, it follows from (1) that

e−px
2 ≈

2∑
n=0

αn,p|x|ne−βn,p|x|,

with α0,p = 1, α1,p = 4θ
√
p, α2,p = 4θ2p, β0,p = 4θ

√
p, β1,p = 3θ

√
p,

β2,p = 2θ
√
p and θ = 1.885. Then, we have the following approximations,

provided chosen ν, µ and p such that the integrals exist:

Integral approximation I. Using our approximation and [5, Case 3, Sub-
section 5.3], we have

∫ +∞

0
xνe−µxe−px

2
dx ≈

2∑
n=0

αn,p
Γ(n+ ν + 1)

(βn,p + µ)n+ν+1
.

Integral approximation II. Using our approximation and [5, Case 7,
Subsection 5.5], we have

∫ +∞

0
xν ln(x)e−px

2
dx ≈

2∑
n=0

αn,p
Γ(n+ ν + 1)

(βn,p)n+ν+1
[ψ(n+ ν + 1)− ln(βn,p)] ,
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where ψ(x) is the digamma function, i.e., the logarithmic derivative of the
gamma function.

Integral approximation III. Using our approximation and [5, Case 12,
Subsection 5.3], we have

∫ +∞

0
xνe−

µ
x e−px

2
dx ≈

2∑
n=0

αn,p2

(
µ

βn,p

)(ν+n+1)/2

Kn+ν+1(2
√
µβn,p),

where Ka(x) is the modified Bessel function of the second kind with pa-
rameter a.

Integral approximation IV. Using our approximation and [5, Case 7,
Subsection 7.3], we have∫ +∞

0
xν cos(υx)e−µxe−px

2
dx ≈

2∑
n=0

αn,pΓ(n+ ν + 1)
[
(βn,p + µ)2 + υ2

]−(n+ν+1)/2×

cos

[
(ν + n+ 1) arctan

(
υ

βn,p + µ

)]
. (3)

Let us remark that if we take υ = 0, we rediscover Integral approximation
I.

Integral approximation V. Using our approximation and [5, Case 8,
Subsection 8.3], we have∫ +∞

0
xν sin(υx)e−µxe−px

2
dx ≈

2∑
n=0

αn,pΓ(n+ ν + 1)
[
(βn,p + µ)2 + υ2

]−(n+ν+1)/2×

sin

[
(ν + n+ 1) arctan

(
υ

βn,p + µ

)]
. (4)

These approximations can be useful in many domains of applied math-
ematics. In the next section, we illustrate the approximations (3) and (4)
by investigate approximation of the Voigt error function, also considered
in [1] for comparison. Note that given the approximation of e−x

2
, one can

also compute Fresnel integrals, and similar related functions as well, such
as other complex error functions.
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3 Application to the Voigt error function

The Voigt error function can be defined as w(x, y) = K(x, y)+ iL(x, y), x ∈
R and y > 0, where

K(x, y) =
1√
π

∫ ∞
0

e−
t2

4 e−yt cos(xt)dt,

L(x, y) =
1√
π

∫ ∞
0

e−
t2

4 e−yt sin(xt)dt.

Clearly, K(x, y) and L(x, y) belongs to the family of Gaussian type inte-
grals. Further details on the Voigt error function and its numerous appli-
cations are given in [2], [7] and [1]. It follows from the approximation (3)
with the notations: p = 1/4, µ = y and υ = x, that

K(x, y) ≈ 1√
π

[ [
(y + 2θ)2 + x2

]− 1
2 cos

[
arctan

(
x

y + 2θ

)]
+2θ

((
y +

3

2
θ

)2

+ x2

)−1
cos

[
2 arctan

(
x

y + 3
2θ

)]

+2θ2
(
(y + θ)2 + x2

)− 3
2 cos

[
3 arctan

(
x

y + θ

)]]
,

and, by the approximation (4), we have the same expression for L(x, y) but
with sin instead of cos :

L(x, y) ≈ 1√
π

[ [
(y + 2θ)2 + x2

]− 1
2 sin

[
arctan

(
x

y + 2θ

)]
+2θ

((
y +

3

2
θ

)2

+ x2

)−1
sin

[
2 arctan

(
x

y + 3
2θ

)]

+2θ2
(
(y + θ)2 + x2

)− 3
2 sin

[
3 arctan

(
x

y + θ

)]]
.

Let us recall some trigonometric formulas: we have

cos (arctan(x)) = 1/
√

1 + x2, cos (2 arctan(x)) = (1− x2)/(1 + x2),

cos (3 arctan(x)) = (1− 3x2)/(1 + x2)3/2, sin (arctan(x)) = x/
√

1 + x2,

sin (2 arctan(x)) = 2x/1 + x2, sin (3 arctan(x)) = x(3− x2)/(1 + x2)3/2.
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Using these formulas in the previous approximations of K(x, y) and L(x, y),
we obtain:

K(x, y) ≈ 1√
π

[
y + 2θ

(y + 2θ)2 + x2
+ 2θ

(y + 3
2θ)

2 − x2((
y + 3

2θ
)2

+ x2
)2

+ 2θ2(y + θ)
(y + θ)2 − 3x2

((y + θ)2 + x2)3

]
and

L(x, y) ≈ 1√
π

[
x

(y + 2θ)2 + x2
+ 4θ

(
y +

3

2
θ

)
x((

y + 3
2θ
)2

+ x2
)2

+ 2θ2
x(3(y + θ)2 − x2)
((y + θ)2 + x2)3

]
.

Let us denote by Kapp2(x, y) and Lapp2(x, y) the approximation above
for K(x, y) and L(x, y) respectively. On the other side, we denote by
Kapp1(x, y) and Lapp1(x, y) the approximation for K(x, y) and L(x, y) re-
spectively proposed by [1]. The errors of the obtained approximations can
be evaluated using the absolute differences for the real and imaginary parts
of the complex error function defined by

∆Re∗ = |Kapp∗(x, y)−K(x, y)|, ∆Im∗ = |Lapp∗(x, y)− L(x, y)|.

As references for K(x, y) and L(x, y) functions we used [3] which provide
highly accurate results. In order to have a visual overview of the behavior of
these error functions, the curves of ∆Re∗ and ∆Im∗ are given in Figure 2. For
both approximation error functions, the maximal discrepancy is observed at
y = 0, more precisely, we have: max(∆Re1) ≈ 0.0337,max(∆Im1) ≈ 0.0349
and max(∆Re2) ≈ 0.0168,max(∆Im2) ≈ 0.0138. Therefore, the approxima-
tion we propose is about twice as accurate as the one proposed in [1] while
maintaining its simplicity and computational advantages.

4 Conclusion

In this paper, we provide a contribution to the applicable approxima-
tions area. We propose a sharp approximation of the important function
e−x

2
with simple polynomial-exponential functions and use it to present

tractable approximations of complex Gaussian integrals. An application
to the Voigt error function is provided to illustrate the usefulness of our
approximation.
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Figure 2: Graphical comparison of ∆Re∗ and ∆Im∗ .
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