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Abstract. In this paper, we investigate the existence, uniqueness and con-
tinuous dependence of solutions of fractional neutral functional differential
equations with infinite delay and the Caputo fractional derivative order, by
means of the Banach’s contraction principle and the Schauder’s fixed point
theorem.
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1 Introduction

In the recent years, the fractional differential equations have attracted
a considerable interest in mathematics and many applications, such as
physics, mechanics, chemistry, engineering, etc. For more details, see the
monographs of Kilbas et al. [18], Miller and Ross [22], Podlubny [28] and
Samko et al. [30], and the papers of Delboso and Rodino [6], Diethelm et
al. [8–10], Gaul et al. [13], Glockle and Nonnenmacher [14], Lakshmikan-
tham [19], Mainardi [20], Metzler et al. [21], Momani et al. [23], Momani
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and Hadid [24], Noroozi et al. [25–27], Podlubny et al. [29], Yu and Gao [31]
and the references therein.

To our knowledge, fractional delay neutral functional differential equa-
tions has not been extensively studied. Especially, the results dealing with
infinite delay are comparatively scarce. Among these studies, some authors
studied fractional functional differential equations [1, 3, 4, 7, 12]. For ex-
ample in [4], Benchohra et al. used the Banach fixed point theorem and
Leray-Schauder type nonlinear alternative to investigate the existence and
uniqueness of solutions for the following problem

Dα[x(t)− g(t, xt)] = f(t, xt), t ∈ [0, b], (1)

x(t) = φ(t), t ∈ (−∞, 0], (2)

where 0 < α < 1, Dα is the standard Riemann-Liouville fractional deriva-
tive, φ ∈ B , φ(0) = 0, B is called a phase space f, g : [0, b] × B −→ R
(b > 0) are given functions satisfying some assumptions with g(0, φ) = 0.
Agarwal et al. in [1], used the Krasnoselskii’s fixed point theorem to study
the existence result of the following problem

cDα[x(t)− g(t, xt)] = f(t, xt), t ∈ [t0,∞), (3)

xt0 = φ ∈ C, (4)

where 0 < α < 1, CDα is the Caputo fractional derivative, f, g : [t0,∞) ×
C −→ Rn are given functions satisfying some assumptions and C is a space
of continuous functions on [−τ, 0].

Our approach is based on the Banach contraction principle and the
Schauder’s fixed point theorem to get on the existence, uniqueness results
and continuous dependence of solutions for the following fractional neutral
functional differential equations with infinite delay

cDα[x(t)− g(t, xt)] = f(t, xt), t ∈ [0, b], (5)

x0 = φ ∈ B, (6)

where 0 < α ≤ 1, cDα is the Caputo fractional derivative, f, g : [0, b]×B −→
R (b > 0) are given functions satisfying some assumptions that will be
specified in Section 3, B the phase space of functions mapping (−∞, 0] into
R, which will be specified in Section 2 and xt : (−∞, 0] → R, such that
xt(θ) = x(t+ θ) for θ ≤ 0.

The paper is organized in five sections. In Section 2, we introduce
some preliminaries and list the hypotheses that will be used throughout
this paper. Section 3 is devoted to the study of existence and uniqueness of
solutions to the problem (5)–(6). The continuous dependence of solutions
to such equations in the space C([a, b]) is discussed in Section 4. Finally,
the conclusion are given in Section 5.
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2 Preliminaries

In this section, we introduce definitions and preliminary facts which are
used throughout this paper. Let C([0, b],R) be the space of all continuous
real functions defined on [0, b] and let Lp([0, b]) (1 ≤ p < ∞) denotes the
set of Lebesgue measurable functions f on [0, b] with the norm ‖f‖p <∞,

where ‖f‖p =
(∫ b

0 |f(t)|p dt
) 1
p
. For any function x defined on (−∞, b] and

any t ∈ [0, b], we denote by xt the element of B defined by

xt(s) = x(t+ s), for −∞ < s ≤ 0. (7)

We will consider the following space

Ω = {x : (−∞, b]→ R : x |(−∞,0]∈ B, x |[0,b]∈ C([0, b],R)},

where x |[0,b]is the restriction of x to [0, b].

Definition 1. ( [18]). The fractional integral of order α > 0 with the lower
limit zero for a function h : [0, b]→ R is defined as

Iα0 h(t) =
1

Γ(α)

∫ t

0
(t− s)α−1h(s)ds, t > 0,

provided the right-hand side is pointwise on [0, b], where Γ(.) is the gamma
function.

Definition 2. ( [18]) The Riemann-Liouville fractional derivative of order
α (n− 1 < α < n) with the lower limit zero for a function h ∈ C([0, b],R)
at the point t is characterized as

Dα
0 h(t) =

1

Γ(n− α)

dn

dtn

∫ t

0
(t−s)n−α−1h(s)ds = DnIn−α0 h(t), t > 0, Dn =

dn

dtn
.

In particular, if 0 < α < 1 and h ∈ Lp([0, b]), then Dα
0 I

α
0 h(t) = h(t), for

t > 0.

Definition 3. ( [18]). Let n−1 < α < n and h ∈ C([0, b],R). The Caputo
fractional derivative with the lower limit zero for a function h is determined
as

cDα
0 h(t) = Dα

0

(
h(t)−

n−1∑
k=0

h(k)(0)

k!
tk

)
.

In particular, if 0 < α < 1, we have cDα
0 h(t) = Dα

0 (h(t)− h(0)). Moreover,
if cDα

0 h(t) ∈ Lp([0, b]), then

Iα0
cDα

0 h(t) = h(t)− h(0).
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Also we can write

cDα
0 h(t) =

1

Γ(n− α)

∫ t

0
(t− s)n−α−1h(n)(s)ds, t > 0.

If 0 < α < 1, we have

cDα
0 h(t) =

1

Γ(1− α)

∫ t

0
(t− s)−αh′(s)ds, t > 0.

Obviously, the Caputo derivative of a constant is equal to zero.

Lemma 1. (Hölder’s inequality). Assume that p, q > 1 and 1
p + 1

q = 1. If
f ∈ Lp([a, b],R) and g ∈ Lq([a, b],R)., then we have Hölder’s inequality for
integrals states that∫ b

a
|f(t)g(t)| dt ≤

(∫ b

a
|f(t)|p dt

) 1
p
(∫ b

a
|g(t)|q dt

) 1
q

.

Definition 4. A function x ∈ Ω is said to be a solution of (5)–(6) if x
satisfies the equation cDα[x(t) − g(t, xt)] = f(t, xt), t ∈ [0, b], with initial
condition x0 = φ.

In this paper, we denote cDα
0 , D

α
0 and Iα0 by cDα, Dα and Iα, respec-

tively, we also assume that the state space (B, ‖.‖B) is a seminormed linear
of functions mapping (−∞, 0] into R and satisfying the following funda-
mental axioms which were introduced by Hale and Kato in [15] and widely
discussed in [16]:

(H1) If x : (−∞, b] → R, such that x is continuous on [0, b] and x0 ∈ B,
then for every t ∈ [0, b] the following statements hold:

(i) xt ∈ B;

(ii) |x(t)| ≤ H ‖xt‖B for some H > 0 which is equivalent to |φ(0)| ≤
H ‖φ‖B for every φ ∈ B;

(iii) ‖xt‖B ≤ K(t) sup
0≤s≤t

|x(s)| + M(t) ‖x0‖B, where K,M : [0,+∞) →

[0,+∞) with K continuous and M locally bounded, such that K,M
are independent of x(.). Denote Kb = sup{K(t) : t ∈ [0, b]} and
Mb = sup{M(t) : t ∈ [0, b]}.

(H2) For the function x(.) in (H1), the function t→ xt is continuous from
[0, b] into B.

(H3) The space B is complete.
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3 Main results

In this section, we give an existence and uniqueness results of (5)–( 6) and
prove it by the Banach contraction principle and the Schauder’s fixed point
theorem. Before starting and proving the main results, we introduce the
following hypotheses:

(A1) There exists a positive constant Lf such that

|f(t, u)− f(t, v)| ≤ Lf ‖u− v‖B , t ∈ [0, b], u, v ∈ B.

(A2) There exists a positive constant Lg such that

|g(t, u)− g(t, v)| ≤ Lg ‖u− v‖B , t ∈ [0, b], u, v ∈ B.

(A3) f : [0, b]× B → R is continuous.

(A4) There exist an η ∈ Lp([0, b],R) with p > 1
α and a continuously non-

decreasing function Ψ : [0,+∞)→ [0,+∞) such that

|f(t, u)| ≤ η(t)Ψ(‖u‖B), t ∈ [0, b], u ∈ B.

(A5) The function g is continuous and completely continuous and for any
bounded set in Ω, the set {t → g(t, xt) : x ∈ B} is equicontinuous in
C([0, b],R) and there exist constants 0 ≤ c1 < 1, c2 > 0 such that

|g(t, u)| ≤ c1 ‖u‖B + c2, t ∈ [0, b], u ∈ B.

Firstly, we prove the uniqueness result by means of the Banach contrac-
tion principle theorem.

Theorem 1. Assume that (A1) and (A2) hold. If

Kb

(
Lg +

bα

Γ(α+ 1)
Lf

)
< 1, (8)

then there exists a unique solution to (5)-(6) on (−∞, b].

Proof. In view of Definition 3, the function x is a solution to (5)-(6) iff x
satisfies

x(t) =

{
φ(0)− g(0, φ) + g(t, xt) + 1

Γ(α)

∫ t
0 (t− s)α−1f(s, xs)ds, t ∈ [0, b],

φ(t), t ∈ (−∞, 0].
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Now, we transform the problem (5)-(6) into a fixed point problem. Consider
the operator N : Ω→ Ω defined by

(Nx)(t) =

{
φ(0)− g(0, φ) + g(t, xt) + 1

Γ(α)

∫ t
0 (t− s)α−1f(s, xs)ds, t ∈ [0, b]

φ(t), t ∈ (−∞, 0].

For φ ∈ B, let w : (−∞, b]→ R be the function defined by

w(t) =

{
φ(0), t ∈ [0, b],
φ(t), t ∈ (−∞, 0].

(9)

Then, we get w0 = φ. For each function z ∈ C([0, b],R), let z :
(−∞, b]→ R be the extension of z to (−∞, b] such that

z(t) =

{
z(t), t ∈ [0, b],
0, t ∈ (−∞, 0].

If x(.) satisfies the integral equation

x(t) = φ(0)− g(0, φ) + g(t, xt) +
1

Γ(α)

∫ t

0
(t− s)α−1f(s, xs)ds, t ∈ [0, b],

then we can decompose x(.) as follows x(t) = w(t) + z(t), t ∈ (−∞, b],
which implies xt = wt+ zt, for every t ∈ [0, b] and the function z(.) satisfies

z(t) = −g(0, φ)+g(t, wt+zt)+
1

Γ(α)

∫ t

0
(t−s)α−1f(s, ws+zs)ds, t ∈ [0, b],

(10)
with z0 = 0. Set Ω0 = {z ∈ Ω, z0 = 0}. For z ∈ Ω0 let ‖.‖Ω0

be seminorm
in Ω0 defined by

‖z‖Ω0
= ‖z0‖B + ‖z‖C = sup{|z(t)| : t ∈ [0, b]}. (11)

Then (Ω0, ‖z‖Ω0
) is a Banach space, which was proved by Arion [2]. Let

the operator T : Ω0 → Ω0 be defined by

(Tz)(t) = −g(0, φ)+g(t, wt+zt)+
1

Γ(α)

∫ t

0
(t−s)α−1f(s, ws+zs)ds, t ∈ [0, b]

(12)
and (Tz)(t) = 0, for t ∈ (−∞, 0]. Then, we get (Tz)0 = 0.

Obviously, the operator N has a fixed point equivalent to T that has a
fixed point too. So we turn to prove that T has a fixed point. If z ∈ Ω0 is
a fixed point of T , then x = w + z is the unique solution to (5)-(6).
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Now, we will show that the operator T : Ω0 → Ω0 is a contraction map.
Indeed, consider z, z∗ ∈ Ω0. For each t ∈ [0, b], we have

|(Tz)(t)− (Tz∗)(t)|
≤

∣∣g(t, wt + zt)− g(t, wt + z∗t)
∣∣

+
1

Γ(α)

∫ t

0
(t− s)α−1

∣∣f(s, ws + zs)− f(s, ws + z∗s)
∣∣ ds

≤ Lg ‖zt − z∗t ‖B +
1

Γ(α)
Lf ‖zt − z∗t ‖B

∫ t

0
(t− s)α−1ds.

Since

‖zt − z∗t ‖B ≤ K(t) sup
0≤τ≤t

{|z(τ)− z∗(τ)|}+M(t) ‖z0 − z∗0‖B

≤ Kb sup
0≤τ≤t

{|z(τ)− z∗(τ)|}

= Kb ‖z − z∗‖C (13)

= Kb ‖z − z∗‖Ω0
, (14)

we get

|(Tz)(t)− (Tz∗)(t)|

≤ LgKb ‖z − z∗‖Ω0
+

1

Γ(α)
LfKb ‖z − z∗‖Ω0

∫ t

0
(t− s)α−1ds

≤ Kb

(
Lg +

bα

Γ(α+ 1)
Lf

)
‖z − z∗‖Ω0

.

Consequently,

‖Tz − Tz∗‖Ω0
≤ Kb

(
Lg +

bα

Γ(α+ 1)
Lf

)
‖z − z∗‖Ω0

.

By the inequality (8), we conclude that

‖Tz − Tz∗‖Ω0
≤ ‖z − z∗‖Ω0

.

This proves that T is a contraction map. As a consequence of the
Banach contraction principle, we can deduce that T has a unique fixed
point which is just the unique solution to the integral equation (10) on
[0, b].

Now set x = w + z , then x is the unique solution to the fractional
differential equation (5)-(6) on (−∞, b].
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Next, the following result is based on Schauder’s fixed point theorem.

Theorem 2. Assume that (A3), (A4) and (A5) hold. Then there exists at
least a solution to (5)-(6) on (−∞, b] provided that

Kb

(
c1 +

bα+1 ‖η‖p
Γ(α+ 1)

lim
ζ→+∞

sup
Ψ (ζ)

ζ

)
< 1. (15)

Proof. As in proof of Theorem 1, we define the operator T : Ω0 → Ω0 and
we also show that the operator T has a fixed point by using the Schauder’s
fixed point theorem. This fixed point is the solution to the problem (5)-(6).
For this purpose, we proceed in several steps.

Step 1: T is continuous.

Let {zn}n∈N be a sequence in Ω0 such that zn → z in Ω0, as well
(zn)t → zt in Ω0 as n→∞. By (12), then for every t ∈ [0, b] and for each
zn, z ∈ Ω0, we have

|(Tzn)(t)− (Tz)(t)|
≤ |g(t, wt + (zn)t)− g(t, wt + zt)|

+
1

Γ(α)

∫ t

0
(t− s)α−1 |f(s, ws + (zn)s)− f(s, ws + zs)| ds.

From the continuity of f , the complete continuity of g and the Lebesgue
dominated convergence theorem, we get ‖Tzn − Tz‖Ω0

→ 0 as n→∞. So
T is continuous.

Step 2: T maps bounded sets into bounded sets in Ω0.

Consider Br = {z ∈ Ω0 : ‖z‖Ω0
≤ r}. For any r > 0, it can be shown

that there exists a positive constant ` such that for all z ∈ Br, ‖Tz‖Ω0
≤ `.

Let z ∈ Br, for each t ∈ [0, b], we have

|(Tz)(t)|

≤ |g(0, φ)|+ |g(t, wt + zt)|+
1

Γ(α)

∫ t

0
(t− s)α−1 |f(s, ws + zs)| ds

≤ (c1 ‖φ‖B + c2) + (c1 ‖wt + zt‖B + c2)

+
1

Γ(α)

∫ t

0
(t− s)α−1η(s)Ψ (‖ws + zs‖B) ds

= c1(‖φ‖B + ‖wt + zt‖B) + 2c2

+
1

Γ(α)
Ψ (‖wt + zt‖B)

∫ t

0
(t− s)α−1η(s)ds. (16)
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Since

‖wt + zt‖B ≤ ‖wt‖B + ‖zt‖B
≤ K(t) sup

0≤τ≤t
|w(τ)|+M(t) ‖w0‖B +K(t) sup

0≤τ≤t
|z(τ)|+M(t) ‖z0‖B

≤ KbH ‖φ‖B +Mb ‖φ‖B +Kb sup
0≤τ≤t

|z(τ)|

= (KbH +Mb) ‖φ‖B +Kb ‖z‖Ω0

≤ (KbH +Mb) ‖φ‖B +Kbr (17)

: = r0 (18)

then by Lemma 1, (16) leads to

|(Tz)(t)| ≤ c1(‖φ‖B + r0) + 2c2 +
1

Γ(α)
Ψ(r0)

(∫ t

0
(t− s)(α−1)qds

) 1
q

‖η‖p

≤ c1(‖φ‖B + r0) + 2c2 +
bα+1 ‖η‖p
Γ(α+ 1)

Ψ(r0)

:= `,

where q > 1, 1
p < α, 1

p + 1
q = 1 and ‖η‖p =

(∫ t
0 |η(s)|p ds

) 1
p
. Therefore,

‖Tz‖Ω0
≤ `, for every z ∈ Br. This means that TBr ⊂ B`. i.e. T maps

bounded sets into bounded sets in Ω0.

Step 3: T maps bounded sets into equicontinuous sets in Ω0.

Let z ∈ Br such that Br be a bounded set of Ω0 as in Step 2 and let
t1, t2 ∈ [0, b] with t1 < t2, we have

|(Tz)(t2)− (Tz)(t1)|
≤ |g(t2, wt2 + zt2)− g(t1, wt1 + zt1)|

+

∣∣∣∣ 1

Γ(α)

∫ t2

0
(t2 − s)α−1f(s, ws + zs)ds−

1

Γ(α)

∫ t1

0
(t1 − s)α−1f(s, ws + zs)ds

∣∣∣∣
≤ |g(t2, wt2 + zt2)− g(t1, wt1 + zt1)|

+
1

Γ(α)

∫ t1

0

∣∣(t2 − s)α−1 − (t1 − s)α−1
∣∣ |f(s, ws + zs)| ds

+
1

Γ(α)

∫ t2

t1

(t2 − s)α−1 |f(s, ws + zs)| ds.

By the complete continuity of g we have

|g(t2, wt2 + zt2)− g(t1, wt1 + zt1)| → 0,
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as t1 → t2. Hence, by (18) and Lemma 1, we obtain

|(Tz)(t2)− (Tz)(t1)|

≤ 1

Γ(α)

∫ t1

0
((t1 − s)α−1 − (t2 − s)α−1)η(s)Ψ (‖ws + zs‖B) ds

+
1

Γ(α)

∫ t2

t1

(t2 − s)α−1η(s)Ψ (‖ws + zs‖B) ds

≤
Ψ(r0) ‖η‖p

Γ(α)

(∫ t1

0
((t1 − s)(α−1) − (t2 − s)(α−1))qds

) 1
q

+
Ψ(r0) ‖η‖p

Γ(α)

(∫ t2

t1

(t2 − s)(α−1)qds

) 1
q

≤
Ψ(r0) ‖η‖p
r2Γ(α)

((tr11 − t
r1
2 ) + 2(t2 − t1)r1)

≤
2Ψ(r0) ‖η‖p
r2Γ(α)

(t2 − t1)r1 ,

where r0 is defined as in Step 2, r1 = (α−1)q+1
q and r2 = ((α− 1)q + 1)

1
q >

0.
It follows that |(Tz)(t2)− (Tz)(t1)| → 0, as t2− t1 → 0 and the conver-

gence is independent of z in Br. This implies that the set {TBr} is equicon-
tinuous. The equicontinuity for the cases t1 < t2 ≤ 0, and t1 ≤ 0 ≤ t2
obvious.

As a consequence of Steps 1–3, and along with the Arzela–Ascoli theo-
rem, we can conclude that T : Ω0 → Ω0 is completely continuous.

Finally, we need to verify that there exists a closed convex bounded
subset Bε = {z ∈ Ω0 : ‖z‖Ω0

≤ ε} ⊆ Ω0 such that TBε ⊆ Bε. For each
positive integer ε, clearly Bε is closed, convex and bounded subset of Ω0.
We claim that there exists a positive integer ε such that TBε ⊆ Bε. If this
property is not true, then for every positive integer ε, there exists zε ∈ Bε
such that (Tzε) /∈ Bε, i.e. ‖Tzε(t)‖Ω0

> ε for some t(ε) ∈ [0, b], where t(ε)
denotes t depending on ε. But by using the previous hypotheses, we obtian

ε < ‖Tzε‖Ω0
= ‖(Tzε)0‖B + sup

0≤t≤b
|(Tzε)(t)|

≤ sup
0≤t≤b

{
|g(0, φ)|+ |g(t, wt + (zε)t)|

+ 1
Γ(α)

∫ t
0 (t− s)α−1 |f(s, ws + (zε)s)| ds

}

≤ sup
0≤t≤b

{
(c1 ‖φ‖B + c2) + (c1 ‖wt + (zε)t‖B + c2)

+ 1
Γ(α)

∫ t
0 (t− s)α−1η(s)Ψ (‖ws + (zε)s‖B) ds

}
.
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According to the inequality (17), we can conclude that

‖wt + (zε)t‖B ≤ (KbH +Mb) ‖φ‖B +Kbε := ζ

and by Lemma 1, we have

ζ < (KbH +Mb) ‖φ‖B +Kb

(
c1 (‖φ‖B + ζ) + 2c2 +

bα+1 ‖η‖p
Γ(α+ 1)

Ψ(ζ)

)
.

Dividing both sides by ζ and taking the upper limit as ζ → +∞, we
obtain

1 < Kb

(
c1 +

bα+1 ‖η‖p
Γ(α+ 1)

lim
ζ→+∞

sup
Ψ (ζ)

ζ

)
,

which contradicts our assumption (15). Thus, for some positive integer ε,
we must have TBε ⊆ Bε.

An application of Schauder’s fixed point theorem shows that there exists
at least a fixed point z of T in Ω0. Therefore, x = w + z is the solution to
(5)-(6) on (−∞, b], and the proof is completed.

4 Continuous dependence

In this section, we discuss the influence of perturbed data on the solution.

Definition 5. The functions x(φ, .), x(ψ, .) ∈ C([0, b]) are solutions of the
problems (5)-(6) and

cDα[x(t)− g(t, xt)] = f(t, xt), t ∈ [0, b], (19)

x0 = ψ ∈ B, (20)

respectively on (−∞, b] if x(φ, .) = wφ + z1 and x(ψ, .) = wψ + z2, where
wφ(t) = φ(0), wψ(t) = ψ(0), z1(t) = z1(t), z2(t) = z2(t) and

z1(t) = −g(0, φ) + g(t, (wφ)t + (z1)t)

+
1

Γ(α)

∫ t

0
(t− s)α−1f(s, (wφ)s + (z1)s)ds, (21)

z2(t) = −g(0, ψ) + g(t, (wψ)t + (z2)t)

+
1

Γ(α)

∫ t

0
(t− s)α−1f(s, (wψ)s + (z2)s)ds, (22)

for each t ∈ [0, b] and for every z1, z2 ∈ C([0, b]).
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Definition 6. ( [11]). The solution x ∈ C([0, b]) of the problem (5)-(6) is
continuously dependent on initial data if for every φ, ψ ∈ B,

‖x(φ, .)− x(ψ, .)‖C ≤ O(‖φ− ψ‖B). (23)

Definition 7. The functions x(g, f, .), x(g̃, f̃ , .) ∈ C([0, b]) are solutions of
the problems (5)-(6) and

cDα[x(t)− g̃(t, xt)] = f̃(t, xt), t ∈ [0, b], (24)

x0 = φ ∈ B, (25)

respectively on (−∞, b] if x(g, f, .) = w + z1 and x(g̃, f̃ , .) = w + z2, where
w(t) = φ(0), z1(t) = z1(t), z2(t) = z2(t) and

z1(t) = −g(0, φ) + g(t, wt + (z1)t)

+
1

Γ(α)

∫ t

0
(t− s)α−1f(s, ws + (z1)s)ds, (26)

z2(t) = −g̃(0, φ) + g̃(t, wt + (z2)t)

+
1

Γ(α)

∫ t

0
(t− s)α−1f̃(s, ws + (z2)s)ds, (27)

for each t ∈ [0, b] and for every z1, z2 ∈ C([0, b]).

Definition 8. ( [11]). The solution x ∈ C([0, b]) of the problem (5)-(6) is
continuously dependent on the parameters f and g if for every f, f̃ , g, g̃ ∈
C([0, b]× B,R),∥∥∥x(g, f, .)− x(g̃, f̃ , .)

∥∥∥
C
≤ O(sup |g − g̃|) +O(sup

∣∣∣f − f̃ ∣∣∣).
Firstly, we have the following theorem regarding the continuous depen-

dence of solution on the initial values.

Theorem 3. Suppose that the assumptions of Theorem 1 hold. Then there
exists a constant κ such that

‖x(φ, .)− x(ψ, .)‖C ≤ κ ‖φ− ψ‖B , ∀φ, ψ ∈ B.

Proof. By Theorem 1, we know that for every φ, ψ ∈ B the problems (5)-
(6) and (19)-(20) have solutions x(φ, .) and x(ψ, .), respectively on (−∞, b].
Further, there are z1, z1 ∈ C([0, b]) such that x(φ, .) = wφ + z1, x(ψ, .) =
wψ + z2 and satisfying (21) and ( 22) for t ∈ [0, b].
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Now, x(φ, t) = φ(0) + z1(t) and x(ψ, t) = ψ(0) + z2(t) for t ∈ [0, b].
Hence, we have

|x(φ, t)− x(ψ, t)|
≤ |φ(0)− ψ(0)|+ |z1(t)− z2(t)|
≤ |φ(0)− ψ(0)|+ |g(0, φ)− g(0, ψ)|+ |g(t, (wφ)t + (z1)t)− g(t, (wψ)t + (z2)t)|

+
1

Γ(α)

∫ t

0
(t− s)α−1 |f(s, (wφ)s + (z1)s)− f(s, (wψ)s + (z2)s)| ds

≤ H ‖φ− ψ‖B + Lg ‖φ− ψ‖B + Lg (‖φt − ψt‖B + ‖(z1)t − (z2)t‖B)

+
1

Γ(α)

∫ t

0
(t− s)α−1Lf (‖φs − ψs‖B + ‖(z1)s − (z2)s‖B) ds.

Since

‖(z1)t − (z2)t‖B ≤ K(t) sup
0≤τ≤t

|z1(τ)− z2(τ)|+M(t) ‖(z1)0 − (z2)0‖B

≤ Kb sup
0≤τ≤t

|z1(τ)− z2(τ)|

= Kb ‖z1 − z2‖C
and

‖φt − ψt‖B ≤ K(t) sup
0≤τ≤t

|φ(τ)− ψ(τ)|+M(t) ‖φ0 − ψ0‖B

≤ Kb |φ(0)− ψ(0)|+Mb ‖φ− ψ‖B
≤ (KbH +Mb) ‖φ− ψ‖B ,

we get

|x(φ, t)− x(ψ, t)| ≤
(
H + Lg +

(
Lg +

bα

Γ(α+ 1)
Lf

)
(KbH +Mb)

)
‖φ− ψ‖B

+

(
Lg +

bα

Γ(α+ 1)
Lf

)
Kb ‖z1 − z2‖C

≤
(
H + Lg +

(
Lg +

bα

Γ(α+ 1)
Lf

)
(KbH +Mb)

)
‖φ− ψ‖B

+

(
Lg +

bα

Γ(α+ 1)
Lf

)
Kb (‖x(φ, .)− x(ψ, .)‖C +H ‖φ− ψ‖B) .

Consequently

‖x(φ, .)− x(ψ, .)‖C ≤
(
H(1 +Kb) + Lg +

(
Lg +

bα

Γ(α+ 1)
Lf

)
(KbH +Mb)

)
‖φ− ψ‖B

+

(
Lg +

bα

Γ(α+ 1)
Lf

)
Kb ‖x(φ, .)− x(ψ, .)‖C .
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By inequality (8), we conclude that

‖x(φ, .)− x(ψ, .)‖C ≤ κ ‖φ− ψ‖B ,

where κ =

(
H(1+Kb)+Lg+

(
Lg+ bα

Γ(α+1)
Lf

)
(KbH+Mb)

)
1−

(
Lg+ bα

Γ(α+1)
Lf

)
Kb

.

This means that the solution of the problem (5)-(6) is continuously
dependent on the random data φ.

THe following theorem is devoted to the study of the continuous de-
pendence of solution on the given functions f and g.

Theorem 4. Let f , f̃, g, and g̃ fulfill hypotheses (A1), (A2) and (A3).
Then there exist two constants K1 and K2 such that∥∥∥x(g, f, .)− x(g̃, f̃ , .)

∥∥∥
C

≤ K1 sup
(t,u)∈[0,b]×B

|g(t, u)− g̃(t, u)|+K2 sup
(t,u)∈[0,b]×B

∣∣∣f(t, u)− f̃(t, u)
∣∣∣ ,

provided that
(
Lg + bα

Γ(α+1)Lf

)
Kb < 1.

Proof. The existence and uniqueness results can be confirmed by Theorem 1
and Theorem 2. Let t ∈ [0, b] and let z1, z1 ∈ C([0, b]) such that x(g, f, t) =
w(t) + z1(t), x(g̃, f̃ , t) = w(t) + z2(t) and satisfying (26) and (27). Hence,
we have∣∣∣x(g, f, t)− x(g̃, f̃ , t)

∣∣∣
= |z1(t)− z2(t)|
≤ |g(0, φ)− g̃(0, φ)|+ |g(t, wt + (z1)t)− g(t, wt + (z2)t)|

+ |g(t, wt + (z2)t)− g̃(t, wt + (z2)t)|

+
1

Γ(α)

∫ t

0
(t− s)α−1 |f(s, ws + (z1)s)− f(s, ws + (z2)s)| ds

+
1

Γ(α)

∫ t

0
(t− s)α−1

∣∣∣f(s, ws + (z2)s)− f̃(s, ws + (z2)s)
∣∣∣ ds

≤ Lg ‖(z1)t − (z2)t‖B + 2 sup
(t,u)∈[0,b]×B

|g(t, u)− g̃(t, u)|

+
tα

Γ(α+ 1)
Lf ‖(z1)t − (z2)t‖B +

tα

Γ(α+ 1)
sup

(t,u)∈[0,b]×B

∣∣∣f(t, u)− f̃(t, u)
∣∣∣

≤
(
Lg +

bα

Γ(α+ 1)
Lf

)
Kb ‖z1 − z2‖C + 2 sup

(t,u)∈[0,b]×B
|g(t, u)− g̃(t, u)|

+
bα

Γ(α+ 1)
sup

(t,u)∈[0,b]×B

∣∣∣f(t, u)− f̃(t, u)
∣∣∣ .
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Therefore,∥∥∥x(g, f, .)− x(g̃, f̃ , .)
∥∥∥
C

≤
(
Lg +

bα

Γ(α+ 1)
Lf

)
Kb

∥∥∥x(g, f, .)− x(g̃, f̃ , .)
∥∥∥
C

+ 2 sup
(t,u)∈[0,b]×B

|g(t, u)− g̃(t, u)|

+
bα

Γ(α+ 1)
sup

(t,u)∈[0,b]×B

∣∣∣f(t, u)− f̃(t, u)
∣∣∣ .

Since
(
Lg + bα

Γ(α+1)Lf

)
Kb < 1, we have∥∥∥x(g, f, .)− x(g̃, f̃ , .)
∥∥∥
C

≤ 2

1−
(
Lg + bα

Γ(α+1)Lf

)
Kb

sup
(t,u)∈[0,b]×B

|g(t, u)− g̃(t, u)|

+
bα

Γ(α+ 1)
(

1−
(
Lg + bα

Γ(α+1)Lf

)
Kb

) sup
(t,u)∈[0,b]×B

∣∣∣f(t, u)− f̃(t, u)
∣∣∣ .

Let K1 = 2

1−
(
Lg+ bα

Γ(α+1)
Lf

)
Kb

and K2 = bα

Γ(α+1)(1−
(
Lg+ bα

Γ(α+1)
Lf

)
Kb)

.

Then, we obtain∥∥∥x(g, f, .)− x(g̃, f̃ , .)
∥∥∥
C

≤ K1 sup
(t,u)∈[0,b]×B

|g(t, u)− g̃(t, u)|+K2 sup
(t,u)∈[0,b]×B

∣∣∣f(t, u)− f̃(t, u)
∣∣∣ .

This confirms that the solution to the problem (5)-(6) is continuously
dependent on the given functions f and g.

5 Conclusion

In this paper, the Banach contraction principle and the Schauder’s fixed
point theorem are used to prove the existence and uniqueness results for
fractional neutral functional differential equations (5)-( 6) with infinite de-
lay and Caputo fractional derivative. Also the influence of perturbed data
have been discussed.
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