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Abstract. In this paper, an efficient numerical scheme based on uniform
Haar wavelets is used to solve the non-planar Burgers equation. The quasi-
linearization technique is used to conveniently handle the nonlinear terms
in the non-planar Burgers equation. The basic idea of Haar wavelet collo-
cation method is to convert the partial differential equation into a system of
algebraic equations that involves a finite number of variables. The solution
obtained by Haar wavelet collocation method is compared with that ob-
tained by finite difference method and are found to be in good agreement.
Shock waves are found to be formed due to nonlinearity and dissipation. We
have analyzed the effects of non-planar and nonlinear geometry on shock
existence. We observe that non-planar shock structures are different from
planar ones. It is of interest to find that Haar wavelets enable to predict
the shock structure accurately.
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1 Introduction

Burgers equation is the simplest nonlinear parabolic equation representing a
phenomena described by a balance between nonlinear convection and linear
diffusion or dissipation. Burgers equation in one dimension was first derived
by Bateman [1] to describe certain viscous flows. Later, Burgers [5, 6]
derived it from Navier-Stokes equation as a model for turbulence. Burgers
equation and its various generalizations, often called generalized Burgers
equations, are categorized as nonlinear diffusive wave equations [20]. It
appears in several physical problems such as one-dimensional turbulence,
sound waves in an viscous medium, waves in fluid filled viscous elastic
tubes, and magnetohydrodynamic waves in a medium with finite electrical
conductivity.

The study of nonlinear partial differential equations (PDEs) serves as an
exceptionally productive theme of study and research in the mathematics
of explosions. The motion of a spherical piston pushing out air or gas in
front of it creates spherical or cylindrical expansion and this is one of the
most simplest ways to simulate an explosion. This can be studied by non-
planar Burgers equation which is derived by Navier-Stokes equation. The
non-planar Burgers equation is given by

∂u

∂t
+ uα

∂u

∂x
+

ju

2(t+ 1)
= ε

∂2u

∂x2
, (1)

where ε > 0 is small, α ≥ 1 is an integer and j > 0 represents the geometry
of the non-planar source. Moreover, j = 1 corresponds to the cylindrical
geometry of the source, whereas j = 2 corresponds to spherical geometry.
A reference may be made to [18] and [13] for the derivation of equation (1)
with α = 1 which describes the propagation of weakly nonlinear longitudi-
nal waves in gases or liquids from a non-planar source. For j = 0, equation
(1) reduces to the planar Burgers equation which has been solved by Ram
Jiwari [12] using Haar wavelet method. Here we present the analysis of the
solution of a more general form of Burgers equation.

The non-planar Burgers equation (1) has applications in nonlinear acous-
tics [8]. Grundy et al. [9] studied the large time solution of an initial value
problem for equation (1) subject to non-negative integrable data. Sachdev
et al. [21] constructed N -wave solution of equation (1). Srinivasa Rao et
al. [24] studied the existence and non-existence of self similar solutions of
equation (1). Sachdev et al. [22, 23] studied the large time behaviour of
periodic solution of equation (1) using a perturbation technique. More re-
cently, Srinivasa Rao [25] studied the solution of equation (1) using Hermite
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interpolation. Also, Srinivasa Rao [26] studied the large time behaviour of
the solution of inviscid form of equation (1).

Wavelets are mathematical functions that decompose data into different
frequency components and then each component is studied with a resolu-
tion matched to its scale. Wavelet theory is the result of a multidisciplinary
effort that brought together mathematicians, physicists and engineers. This
connection has created a flow of ideas that goes well beyond the construc-
tion of new bases or transforms. Wavelets are well-suited for approximating
data with sharp discontinuities. This representation is more accurate and
useful in data compression, noise removal, pattern classification and fast
scientific computation.

In recent years, the wavelet approach for the solution of PDEs has
become very popular. Multi-resolution analysis of wavelets capture local
features efficiently as such enables to detect singularities, shocks, irregular
structure and transient phenomena exhibited by the analyzed equations.
Haar wavelets are based on the functions which were introduced by the
Hungarian mathematician Alfred Haar in 1910.

Chen and Hsiao [7] recommended to expand into the Haar series the
highest order derivatives appearing in the differential equation. This idea
has been very prolific and it is being abundantly applied for the solution of
PDEs. The wavelet coefficients appearing in the Haar series are calculated
either using Collocation method or Galerkin method. Lepik [?,14–16] used
Haar wavelet method to solve linear Fredholm integral equation, nonlinear
Volterra integral equation, stiff differential equations, Duffing equation, dif-
fusion equation, Burgers equation and Sine-Gordon equation. Bujurke et
al. [3] have computed eigenvalues and solutions of regular Sturm-Liouville
problems using Haar wavelets. More recently, Hariharan et al. [10] have
solved Klein-Gordon and Sine-Gordon equations using Haar wavelet meth-
ods.

In this paper, an efficient and novel numerical scheme based on uniform
Haar wavelets [17] is used to solve the non-planar Burgers equation. The
quasilinearization technique is used to conveniently handle the nonlinear
terms in the non-planar Burgers equation.

The paper is organized as follows. The Haar wavelet preliminaries and
the function approximation are presented in Section 2. The method of
solution of the non-planar Burgers equation using Haar wavelets is proposed
in Section 3 and the solution using Finite difference method in Section 4.
The results and discussions are presented in Section 5. The conclusions
drawn are presented in Section 6. Section 7 contains the graphs and tables
obtained.
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2 Haar wavelets

The Haar wavelet is a sequence of rescaled ”square-shaped” functions which
together form a wavelet family or basis. The Haar wavelets consist of piece-
wise constant functions and are therefore the simplest orthonormal wavelets
with a compact support. An advantage of these wavelets is the possibility
to integrate them analytically arbitrary times. They are conceptually sim-
ple, fast, memory efficient and exactly reversible. They are often known as
a first order Daubechies wavelet. The Haar wavelet family for x ∈ [0, 1] is
defined as follows

hi(x) =


1, for x ∈ [ξ1, ξ2),

−1, for x ∈ [ξ2, ξ3),

0, elsewhere,

(2)

where ξ1 = k/m, ξ2 = (k + 0.5)/m, and ξ3 = (k + 1)/m.

In the above definition m = 2d, d = 0, 1, . . . , J indicates the level of
the wavelet; k = 0, 1, . . . ,m − 1 is the translation parameter and J is the
maximum level of resolution. The index i in equation (2) is calculated by
the formula i = m+ k+ 1. In the case of minimum values m = 1, k = 0 we
have i = 2. The maximum value of i is i = 2M = 2J+1. For i = 1 , h1(x)
is assumed to be the scaling function which is defined as follows:

h1(x) =

{
1, for x ∈ [0, 1),

0, elsewhere.
(3)

In order to solve PDEs of any order, we need the following integrals:

pi(x) =

∫ x

0
hi(x)dx =


x− ξ1, for x ∈ [ξ1, ξ2),

ξ3 − x, for x ∈ [ξ2, ξ3),

0, elsewhere,

qi(x) =

∫ x

0
pi(x)dx =



(x− ξ1)2

2
, for x ∈ [ξ1, ξ2),

1

4m2
− (ξ3 − x)2

2
, for x ∈ [ξ2, ξ3),

1

4m2
, for x ∈ [ξ3, 1],

0, elsewhere.
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3 Multi-resolution analysis

The best way to understand wavelets is through multi-resolution analysis.
A multi-resolution analysis (MRA) of L2(R) is defined as a sequence of
closed subspaces Vd ∈ L2(R), d ∈ Z with the following properties.

(i) . . . ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ . . .
(ii) The spaces Vd satisfy

⋃
d∈Z

Vd is dense in L2(R) and
⋂
d∈Z

Vd = 0.

(iii) If f(x) ∈ V0, then f(2dx) ∈ Vd, i.e., the spaces Vd are scaled versions
of the central space V0.

(iv) If f(x) ∈ V0, then f(2dx− k) ∈ Vd, i.e., all the Vd are invariant under
translation.

(v) There exists φ ∈ V0 such that {φ(x−k); k ∈ Z} is a Riesz basis in V0.

The space Vd is used to approximate general functions by defining ap-
proximate projection of these functions onto these spaces. Since the union
of all the Vd is dense in L2(R), so it guarantees that any function in L2(R)
can be approximated arbitrarily close by such projections. As an example,
the space Vd can be defined like

Vd = Wd−1 ⊕ Vd−1 = Wd−1 ⊕Wd−2 ⊕ Vd−2 = . . . =
J+1
⊕
d=1

Wd ⊕ V0,

then the scaling function h1(x) generates an MRA for the sequence of spaces
{Vd; d ∈ Z} by translation and dilation as defined in equations (2), (3). For
each d, the space Wd serves as an orthogonal complement of Vd in Vd+1.
The space Wd includes all the functions in Vd+1 that are orthogonal to all
those in Vd under some chosen inner product. The set of functions which
forms a basis for the space Wd are called wavelets.

Given a function f ∈ L2(R), the MRA of L2(R) produces a sequence
of subspaces Vd, Vd+1, . . . such that the projections of f onto these spaces
give finer and finer approximations of the function f as J →∞ [19].

4 Function approximation

Any function f(x) which is square integrable on (0, 1) can be expressed as
an infinite sum of Haar wavelets as

f(x) =

∞∑
i=1

a(i)hi(x), (4)

where a(i) =
∫ 1

0 f(x)hi(x)dx. If f(x) is approximated as piecewise con-
stant during each subinterval, then equation (4) will be terminated at
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finite terms, i.e. f(x) =
∑2M

i=1 a(i)hi(x), where the wavelet coefficients
a(i), i = 1, 2, . . . , 2M are to be determined.

5 Method of solution

5.1 Haar wavelet collocation method

Consider an initial boundary value problem (IBVP) for the non-planar
Burgers equation [25],

ut + uαux +
ju

2(t+ 1)
= εuxx, 0 < x < 1, t > 0, (5)

with the initial and boundary conditions

u(x, 0) = sin(πx), 0 ≤ x ≤ 1, (6)

u(0, t) = 0, u(1, t) = 0, t ≥ 0. (7)

Divide the interval [0, T ] into N equal parts of length ∆t = T
N and denote

ts = (s− 1)∆t, s = 1, 2, . . . , N .
We assume a Haar wavelet solution for equation (5) in the form

u̇′′(x, t) =

2M∑
i=1

as(i)hi(x), (8)

where the dot and prime denote differentiation with respect to t and x re-
spectively and the row vector as is constant in the subinterval t ∈ [ts, ts+1].
Integrating equation (8) with respect to t in the limits [ts, t] leads to

u′′(x, t) = (t− ts)
2M∑
i=1

as(i)hi(x) + u′′(x, ts). (9)

Repeatedly integrating equation (9) with respect to x in the limits [0, x]
gives

u′(x, t) = (t− ts)
2M∑
i=1

as(i)pi(x) + u′(x, ts) + u′(0, t)− u′(0, ts), (10)

u(x, t) = (t− ts)
2M∑
i=1

as(i)qi(x) + u(x, ts) + u(0, t)− u(0, ts)

+ x[u′(0, t)− u′(0, ts)].

(11)
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By using the boundary conditions (7), we obtain

u(0, ts) = 0, u(1, ts) = 0. (12)

Putting x = 1 in equation (11) and using the conditions in (7) and (12),
we arrive at

u′(0, t)− u′(0, ts) = −(t− ts)
2M∑
i=1

as(i)qi(1), (13)

Substituting equations (7), (12) and (13) into equations (10) and (11), we
have

u′(x, t) = (t− ts)
2M∑
i=1

as(i)[pi(x)− qi(1)] + u′(x, ts), (14)

u(x, t) = (t− ts)
2M∑
i=1

as(i)[qi(x)− xqi(1)] + u(x, ts). (15)

Differentiating equation (15) with respect to t leads to

u̇(x, t) =

2M∑
i=1

as(i)[qi(x)− xqi(1)]. (16)

The wavelet collocation points are defined as

xl =
l − 0.5

2M
, l = 1, 2, . . . , 2M.

Taking the collocation points x → xl and t → ts+1 in equations (9), (14),
(15) and (16), we get

u′′(xl, ts+1) = ∆t

2M∑
i=1

as(i)hi(xl) + u′′(xl, ts), (17)

u′(xl, ts+1) = ∆t
2M∑
i=1

as(i)[pi(xl)− qi(1)] + u′(xl, ts), (18)

u(xl, ts+1) = ∆t
2M∑
i=1

as(i)[qi(xl)− xlqi(1)] + u(xl, ts), (19)

u̇(xl, ts+1) =

2M∑
i=1

as(i)[qi(xl)− xlqi(1)]. (20)
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Using the well known quasilinearization technique [2] to handle the nonlin-
earity in equation (5), we obtain the following approximation scheme

u̇(x, ts+1) + uα(x, ts)u
′(x, ts+1)− εu′′(x, ts+1) +

[
αuα−1(x, ts)u

′(x, ts)

+
j

2(ts+1 + 1)

]
u(x, ts+1) = αuα(x, ts)u

′(x, ts), s = 0, 1, 2, . . .

which leads us from the layer ts to ts+1.
Taking the collocation points xl in (5.1) and using equations (17) - (20),

the following 2M system of equations are obtained:

2M∑
i=1

A(xl, ts)as(i) = f(xl, ts), l = 1, 2, . . . , 2M, s = 0, 1, 2, . . .

where

A(xl, ts) =

{
1 +

j∆t

2(ts+1 + 1)
+ α∆tuα−1(xl, ts)u

′(xl, ts)

}
qi(xl)

+ ∆tuα(xl, ts)pi(xl)− ε∆thi(xl)−
{
xl +

j∆txl
2(ts+1 + 1)

+ α∆txlu
α−1(xl, ts)u

′(xl, ts) + ∆tuα(xl, ts)

}
qi(1),

f(xl, ts) = εu′′(xl, ts)− uα(xl, ts)u
′(xl, ts)−

j

2(ts+1 + 1)
u(xl, ts).

Using the initial conditions (6), we have

u(xl, 0) = sin(2πxl), u
′(xl, 0) = 2π cos(2πxl), u

′′(xl, 0) = −4π2 sin(2πxl).

The wavelet coefficients as(i), i = 1, 2, . . . , 2M can be successively cal-
culated by solving the 2M system of equations in equation (17). This
process is started with the conditions in equation (5.1). The 2M system of
equations are solved in MATLAB using the Symbolic Math Toolbox which
takes care of the sparseness of the coefficient matrix. These coefficients are
then substituted in equations (17)-(19) to obtain the approximate solutions
at different time levels.

5.2 Finite difference method

The Finite difference method [11] is used to solve the quasilinearized non-
planar Burgers equation (5.1) with initial condition (6) and boundary con-
ditions (7).
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Let ∆x and ∆t be the step sizes with respect to x and t respectively,
r = 1

∆x be the number of subintervals with respect to x, N = T
∆t be the

number of time levels where t ∈ [0, T ], xl = l∆x for l = 0, 1, 2, . . . , r and
ts = s∆t for s = 0, 1, 2, . . . , N .

The backward difference approximation for the first order derivative
with respect to t is

u̇(xl, ts+1) =
u(xl, ts+1)− u(xl, ts)

∆t
. (21)

The forward difference approximation for the first order derivative with
respect to x at s and s+ 1 time levels are respectively given by

u′(xl, ts) =
u(xl+1, ts)− u(xl, ts)

∆x
, (22)

u′(xl, ts+1) =
u(xl+1, ts+1)− u(xl, ts+1)

∆x
. (23)

The centered difference approximation for the second order derivative with
respect to x will be

u′′(xl, ts+1) =
u(xl+1, ts+1)− 2u(xl, ts+1) + u(xl−1, ts+1)

(∆x)2
. (24)

Substituting equations (21)-(24) into equation (5.1), we obtain the following
tridiagonal system of equations,

− ε

(∆x)2
u(xl−1, ts+1) +

[
α

∆x
uα−1(xl, ts)u(xl+1, ts)−

(α+ 1)

∆x
uα(xl, ts)

+
j

2(ts+1 + 1)
+

2ε

(∆x)2
+

1

∆t

]
u(xl, ts+1) +

[
1

∆x
uα(xl, ts)

− ε

(∆x)2

]
u(xl+1, ts+1) =

1

∆t
u(xl, ts) +

α

∆x
[u(xl+1, ts)

−u(xl, ts)]u
α(xl, ts), l = 1, 2, . . . , r − 1, s = 1, 2, . . . , N,

(25)
with the initial and boundary conditions

u(xl, t0) = sin(πxl), l = 0, 1, 2, . . . , r,

u(x0, ts) = 0
u(xr, ts) = 0

}
s = 0, 1, 2, . . . , N.

We use Thomas algorithm [4] to solve these tridiagonal system of equations
(25) using the above conditions. The obtained results are compared with
the Haar wavelet collocation method solution.
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6 Error analysis

In this section, the error analysis for the Haar wavelet method has been
discussed.

Lemma 1. Let f(x) ∈ L2(R) be a continuous function in (0, 1) with

|f ′(x)| ≤ K; ∀x ∈ (0, 1); K > 0 and f(x) =
∞∑
i=1

aihi(x). Then |ai| ≤

2−(3d+2)/2K.

Proof. According to the one-dimensional MRA,

f(x) =

∞∑
i=1

aihi(x), (26)

where

hi(x) = 2d/2h(2dx− k)dx; k = 1, 2, . . . , 2d − 1, d = 0, 1, . . . J, (27)

ai =

∫ 1

0
f(x)hi(x)dx =

∫ 1

0
2d/2f(x)h(2dx− k)dx. (28)

We have,

h(2dx− k) =


1 if k2−d ≤ x ≤ (k + 1

2)2−d

−1 if (k + 1
2)2−d ≤ x ≤ (k + 1)2−d

0 elsewhere

(29)

Using equation (29) in equation (28), we obtain

ai = 2d/2

[∫ (k+ 1
2

)2−d

k2−d

f(x)dx−
∫ (k+1)2−d

(k+ 1
2

)2−d

f(x)dx

]

= 2d/2
[{(

k +
1

2

)
2−d − k2−d

}
f(η1)−

{
(k + 1)2−d

−
(
k +

1

2

)
2−d
}
f(η2)

]
where η1 ∈

(
k2−d, (k +

1

2
)2−d

)
, η2 ∈

(
(k +

1

2
)2−d, (k + 1)2−d

)
= 2−(d+2)/2[f(η1)− f(η2)]

= 2−(d+2)/2(η1 − η2)f ′(η) where η ∈ (η1, η2) [by Mean Value Theorem.]
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Since |f ′(η)| ≤ K, we get

|ai| ≤ 2−(d+2)/22−dK = 2−(3d+2)/2K.

Theorem 1. If u(x, ts+1) is the exact solution and u2M (x, ts+1) is the Haar
wavelet solution at t = ts+1, then

‖EJ‖ = ‖u(x, ts+1)− u2M (x, ts+1)‖ ≤ 2−
1
2

(J+3)∆tK
√
C

1− 2−
1
2

,

where C,K > 0, J is the level of resolution of the wavelet and M = 2J .

Proof. From equation (15), the Haar wavelet solution at t = ts+1 is given
by

u2M (x, ts+1) = ∆t
2M∑
i=1

as(i)[qi(x)− xqi(1)] + u(x, ts).

Taking the asymptotic expansion of the above equation, we get

u(x, ts+1) = ∆t
∞∑
i=1

as(i)[qi(x)− xqi(1)] + u(x, ts).

The error estimation at J th level of resolution is

‖EJ‖ = ‖u(x, ts+1)− u2M (x, ts+1)‖ =

∣∣∣∣∣∆t
∞∑

i=2M+1

as(i)[qi(x)− xqi(1)]

∣∣∣∣∣ ,
‖EJ‖2 =

∣∣∣∣∣
∫ ∞
−∞

〈
∆t

∞∑
i=2M+1

as(i)[qi(x)− xqi(1)],

∆t
∞∑

l=2M+1

as(l)[ql(x)− xql(1)]

〉
dx

∣∣∣∣∣
=

∣∣∣∣(∆t)2
∞∑

i=2M+1

∞∑
l=2M+1

as(i)as(l)

∫ 1

0
[qi(x)− xqi(1)][ql(x)

− xql(1)]dx

∣∣∣∣
≤ (∆t)2

∞∑
i=2M+1

∞∑
l=2M+1

|as(i)||as(l)|C,
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where C = sup
i,l

∫ 1

0
[qi(x)− xqi(1)][ql(x)− xql(1)]dx. Thus, we obtain

‖EJ‖2 ≤ C(∆t)2
∞∑

i=2M+1

|as(i)|
∞∑

l=2M+1

|as(l)|. (30)

Using Lemma 1, we have

∞∑
i=2M+1

|as(i)| ≤
∞∑

i=2M+1

2−(3d+2)/2K (31)

= K
∞∑

d=J+1

2d+1∑
i=2d+1

2−(3d+2)/2

= K

∞∑
d=J+1

2−(3d+2)/22d = K

∞∑
d=J+1

2−(d+2)/2.

Hence, we get
∞∑

i=2M+1

|as(i)| ≤
2−

1
2

(J+3)K

1− 2−
1
2

. (32)

Similarly,
∞∑

l=2M+1

|as(l)| ≤
2−

1
2

(J+3)K

1− 2−
1
2

. (33)

Substituting equations (32) and (33) into equation (30), we obtain

‖EJ‖2 ≤
2−(J+3)(∆t)2K2C

(1− 2−
1
2 )2

. (34)

Therefore,

‖EJ‖ ≤
2−

1
2

(J+3)∆tK
√
C

1− 2−
1
2

. (35)

It is clear from equation (35) that the error bound ‖EJ‖ → 0 as J →∞.
Hence the accuracy of the Haar wavelet method improves as the level of
resolution J of the Haar wavelet is increased.
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7 Results and discussions

Equation (5) is a Burgers equation modified by an extra term ju
2(t+1) arising

due to the effect of the non planar cylindrical (j = 1) or spherical (j = 2)
geometry. The Haar wavelet collocation method (HWCM) solutions are
obtained for α = 1, 2, j = 1, 2 and ε = 0.1, 0.05, 0.01, 0.005 with ∆t = 0.001,
M = 64. Lagrange’s interpolation is used to find the solution at specified
points. The results are compared with the solutions obtained from Finite
difference method (FDM) with ∆t = 0.001, ∆x = 0.001 and are presented
in Tables 1-4. The solutions obtained from both the methods are found
to be in good agreement. It can be noted that the solution of non-planar
Burgers equation by FDM requires nearly 1000 grid points whereas the
solution by HWCM is approximately accurate using only 128 grid points.
Srinivasa Rao [25] has solved Equation (5) using Hermite interpolation. The
HWCM solution obtained by us are in good agreement with the solution
of Srinivasa Rao [25]. But we observe that HWCM solution reveals shock
structure which are not explored by Srinivasa Rao [25].

The exact solution of equation (5) for α = 1 and j = 0 (planar geome-
try) obtained using Hopf-Cole transformation [20] is given by

u(x, t) =

2πε
∞∑
n=1

Anne
−n2π2εt sin(nπx)

A0 +

∞∑
n=1

Ane−n
2π2εt cos(nπx)

,

where

A0 =

∫ 1

0
exp

(
−
(

1− cos(πx)

2πε

))
dx,

An = 2

∫ 1

0
exp

(
−
(

1− cos(πx)

2πε

))
cos(nπx) dx.

The HWCM solution and the exact solution are found to be in good agree-
ment and are presented in Table 5.

In order to measure the accuracy of the solutions obtained by HWCM,
we define the error estimate at t = ts by

µ(ts) =
1

2M
‖u(x, ts)− uex(x, ts)‖ ,

where uex(x, ts) is the exact solution at t = ts. The L2 and L∞ error norms
are calculated for ε = 0.1, 0.05, 0.01, 0.005 with ∆t = 0.001, M = 64 and
are presented in Table 6.
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The HWCM solution for α = 1, ε = 0.1, j = 1 (cylindrical symmetry)
and j = 2 (spherical symmetry) are presented in Figure 1 and for ε = 0.005
in Figure 4. The figures are depicted up to time t ≤ 1. We observe that
the graphs are becoming steep as ε decreases for both cylindrical as well
as spherical geometry. The HWCM solution for α = 2, ε = 0.1, j = 1
(cylindrical symmetry) and j = 2 (spherical symmetry) are presented in
Figure 7 and for ε = 0.005 in Figure 10. The steepening of the graphs
continues with decreasing ε for both cylindrical as well as spherical geometry
even as the nonlinearity increases. The physical behaviour of the HWCM
solution in contour and 3D for α = 1, ε = 0.1, j = 1 (cylindrical symmetry)
and j = 2 (spherical symmetry) are presented in Figures 2 and 3 and
for ε = 0.005 in Figures 5 and 6. The physical behaviour of the HWCM
solution in contour and 3D for α = 2, ε = 0.1, j = 1 (cylindrical symmetry)
and j = 2 (spherical symmetry) are presented in Figures 8 and 9 and for
ε = 0.005 in Figures 11 and 12. The steepening of the graphs as ε decreases
can also be observed in these contour and 3D graphs.

7.1 Shock analysis

We have studied the effects of planar (j = 0), cylindrical (j = 1) and
spherical (j = 2) geometries on the time dependent shock waves. It is
observed that the shock structures exist in both planar and non-planar
systems. The formation of shock structures depends on the geometry of
the source. The effects of the geometry on the shock amplitude have been
explicitly observed. The HWCM solution reveals that for a large value of t
the cylindrical and spherical shock structures are similar to one dimensional
planar ones. This is because for large t the term ju

2(t+1) which is due to the
effect of cylindrical and spherical geometry becomes negligible. However
as t decreases the term ju

2(t+1) becomes important, and both the cylindrical
and spherical shocks significantly differ from one dimensional planar ones.

For α = 1, it is observed that shocks exist in the range x ∈ (0.9, 1) at
time t = 0.32 for planar geometry, at t = 0.35 for cylindrical geometry and
at t = 0.38 for spherical geometry (see Figures 13, 14 and 15). It is observed
that the shocks are delayed from planar to cylindrical and cylindrical to
spherical geometries. Similarly, for α = 2, that is, when the nonlinearity
increases, it is observed that shocks exist in the range x ∈ (0.8, 1) at time
t = 0.36 for planar geometry, at t = 0.45 for cylindrical geometry and
at t = 0.6 for spherical geometry (see Figures 16, 17 and 18). Here the
shocks are much more delayed from planar to cylindrical and cylindrical
to spherical geometries. It is found that as the value of t decreases, the
amplitude of these shocks increases and it is also found that the amplitude
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of the cylindrical shock is larger than that of the spherical ones.
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Figure 1: HWCM solution for α = 1, j = 1 (left), j = 2 (right) and ε = 0.1
at different times t with ∆t = 0.001.
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Figure 2: Physical behaviour of the HWCM solution for α = 1, j = 1 and
ε = 0.1.
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Figure 3: Physical behaviour of the HWCM solution for α = 1, j = 2 and
ε = 0.1.
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Figure 4: HWCM solution for α = 1, j = 1 (left), j = 2 (right) and
ε = 0.005 at different times t with ∆t = 0.001.
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Figure 5: Physical behaviour of the HWCM solution for α = 1, j = 1 and
ε = 0.005.
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Figure 6: Physical behaviour of the HWCM solution for α = 1, j = 2 and
ε = 0.005.
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Figure 7: HWCM solution for α = 2, j = 1 (left), j = 2 (right) and ε = 0.1
at different times t with ∆t = 0.001.
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Figure 8: Physical behaviour of the HWCM solution for α = 2, j = 1 and
ε = 0.1.

t

x

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0

0.5

1

1.5

2

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

tx

u
(x

,t
)

Figure 9: Physical behaviour of the HWCM solution for α = 2, j = 2 and
ε = 0.1.
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Figure 10: HWCM solution for α = 2, j = 1 (left), j = 2 (right) and
ε = 0.005 at different times t with ∆t = 0.001.
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Figure 11: Physical behaviour of the HWCM solution for α = 2, j = 1 and
ε = 0.0.005.
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Figure 12: Physical behaviour of the HWCM solution for α = 2, j = 2 and
ε = 0.005.
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Figure 13: HWCM solution for α = 1, j = 0, ε = 0.0001 (left) and ε =
0.0000001 (right) with ∆t = 0.001.
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Figure 14: HWCM solution for α = 1, j = 1, ε = 0.0001 (left) and ε =
0.0000001 (right) with ∆t = 0.001.
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Figure 15: HWCM solution for α = 1, j = 2, ε = 0.0001 (left) and ε =
0.0000001 (right) with ∆t = 0.001.



108 S.R. Shesha, A.L. Nargund and N.M. Bujurke

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0
0 . 0
0 . 1
0 . 2
0 . 3
0 . 4
0 . 5
0 . 6
0 . 7
0 . 8
0 . 9
1 . 0
1 . 1
1 . 2
1 . 3

u(x
,t)

x

 t  =  0 . 3 6

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0
0 . 0
0 . 1
0 . 2
0 . 3
0 . 4
0 . 5
0 . 6
0 . 7
0 . 8
0 . 9
1 . 0
1 . 1
1 . 2
1 . 3

u(x
,t)

x

 t  =  0 . 3 6

Figure 16: HWCM solution for α = 2, j = 0, ε = 0.0001 (left) and ε =
0.0000001 (right) with ∆t = 0.001.
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Figure 17: HWCM solution for α = 2, j = 1, ε = 0.0001 (left) and ε =
0.0000001 (right) with ∆t = 0.001.
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Figure 18: HWCM solution for α = 2, j = 2, ε = 0.0001 (left) and ε =
0.0000001 (right) with ∆t = 0.001.
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Table 1: Comparison of the HWCM solution and FDM solution for α = 1, j = 1
and ε = 0.1, 0.05, 0.01, 0.005 at different times t and x.

x t
u(x, t)

HWCM FDM HWCM FDM
ε = 0.1 ε = 0.05

0.25 0.2 0.3977430 0.3978635 0.4179511 0.4180571
0.4 0.2712137 0.2713318 0.2903930 0.2904786
0.6 0.2022805 0.2023968 0.2203689 0.2204376
0.8 0.1579861 0.1581049 0.1764700 0.1765276
1.0 0.1262658 0.1263862 0.1464795 0.1465306
2.0 0.0438310 0.0439029 0.0749411 0.0749972
3.0 0.0149376 0.0149572 0.0437530 0.0438102
4.0 0.0050802 0.0050770 0.0256629 0.0257030
5.0 0.0017500 0.0017383 0.0149237 0.0149450

0.50 0.2 0.6933896 0.6937845 0.7442324 0.7446282
0.4 0.4937264 0.4941208 0.5487110 0.5490260
0.6 0.3686424 0.3690213 0.4252621 0.4255058
0.8 0.2826228 0.2829794 0.3433262 0.3435345
1.0 0.2196262 0.2199482 0.2852889 0.2854852
2.0 0.0670473 0.0671717 0.1372345 0.1374253
3.0 0.0216801 0.0217097 0.0729007 0.0730319
4.0 0.0072467 0.0072421 0.0399176 0.0399910
5.0 0.0024821 0.0024654 0.0222753 0.0223100

0.75 0.2 0.6771242 0.6778301 0.7806894 0.7815773
0.4 0.5217762 0.5226810 0.6807172 0.6818740
0.6 0.3810644 0.3818584 0.5542190 0.5553021
0.8 0.2768852 0.2775048 0.4471790 0.4481625
1.0 0.2030481 0.2035122 0.3620212 0.3628951
2.0 0.0516072 0.0517144 0.1391561 0.1395295
3.0 0.0157433 0.0157655 0.0626479 0.0628012
4.0 0.0051689 0.0051656 0.0313354 0.0314023
5.0 0.0017603 0.0017484 0.0166717 0.0166998

ε = 0.01 ε = 0.005
0.25 0.2 0.4332243 0.4333149 0.4350776 0.4351662

0.4 0.3028405 0.3028985 0.3042578 0.3043122
0.6 0.2299961 0.2300353 0.2310289 0.2310645
0.8 0.1841292 0.1841581 0.1849055 0.1849311
1.0 0.1528202 0.1528428 0.1534242 0.1534442
2.0 0.0805381 0.0805488 0.0807827 0.0807928
3.0 0.0536871 0.0536938 0.0538226 0.0538298
4.0 0.0399197 0.0399242 0.0400072 0.0400130
5.0 0.0316177 0.0316207 0.0316817 0.0316865

0.50 0.2 0.7828017 0.7831855 0.7874634 0.7878451
0.4 0.5815200 0.5817585 0.5850879 0.5853183
0.6 0.4504626 0.4506043 0.4529476 0.4530813
0.8 0.3636685 0.3637600 0.3654691 0.3655540
1.0 0.3031158 0.3031797 0.3044801 0.3045386
2.0 0.1607260 0.1607461 0.1612459 0.1612646
3.0 0.1072681 0.1072780 0.1075528 0.1075630
4.0 0.0797637 0.0797703 0.0799782 0.0799847
5.0 0.0630571 0.0630648 0.0633471 0.0633516

0.75 0.2 0.8714380 0.8724533 0.8828280 0.8838540
0.4 0.7860245 0.7868398 0.7954457 0.7962190
0.6 0.6444616 0.6448931 0.6501302 0.6505281
0.8 0.5313554 0.5316013 0.5350542 0.5352779
1.0 0.4472070 0.4473609 0.4498250 0.4499636
2.0 0.2400135 0.2400551 0.2410078 0.2410351
3.0 0.1593601 0.1594267 0.1610796 0.1610882
4.0 0.1157131 0.1158172 0.1198160 0.1198219
5.0 0.0876478 0.0877654 0.0947297 0.0947425
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Table 2: Comparison of the HWCM solution and FDM solution for α = 1, j = 2
and ε = 0.1, 0.05, 0.01, 0.005 at different times t and x.

x t
u(x, t)

HWCM FDM HWCM FDM
ε = 0.1 ε = 0.05

0.25 0.2 0.3679063 0.3680170 0.3871136 0.3872115
0.4 0.2371068 0.2372115 0.2552672 0.2553448
0.6 0.1685392 0.1686392 0.1858973 0.1859596
0.8 0.1258408 0.1259382 0.1437897 0.1438427
1.0 0.0962326 0.0963252 0.1157586 0.1158065
2.0 0.0272142 0.0272510 0.0517684 0.0518155
3.0 0.0079283 0.0079310 0.0264189 0.0264535
4.0 0.0024009 0.0023917 0.0137083 0.0137250
5.0 0.0007587 0.0007456 0.0071904 0.0071942

0.50 0.2 0.6372362 0.6375924 0.6851780 0.6855391
0.4 0.4261469 0.4264855 0.4780113 0.4782969
0.6 0.3012237 0.3015312 0.3549454 0.3551711
0.8 0.2193689 0.2196382 0.2761681 0.2763652
1.0 0.1623760 0.1626013 0.2217554 0.2219406
2.0 0.0406150 0.0406753 0.0907497 0.0908850
3.0 0.0113807 0.0113848 0.0419491 0.0420181
4.0 0.0034101 0.0033971 0.0205472 0.0205752
5.0 0.0010744 0.0010558 0.0104695 0.0104756

0.75 0.2 0.6125294 0.6131342 0.7063654 0.7071321
0.4 0.4348874 0.4355837 0.5728822 0.5738464
0.6 0.2970322 0.2975899 0.4414657 0.4423518
0.8 0.2039637 0.2043659 0.3390805 0.3398462
1.0 0.1424893 0.1427709 0.2621613 0.2627969
2.0 0.0303882 0.0304370 0.0842191 0.0844210
3.0 0.0081698 0.0081729 0.0337275 0.0337956
4.0 0.0024218 0.0024126 0.0154441 0.0154673
5.0 0.0007607 0.0007475 0.0076276 0.0076323

ε = 0.01 ε = 0.005
0.25 0.2 0.4016669 0.4017512 0.4034348 0.4035172

0.4 0.2671096 0.2671630 0.2684587 0.2685089
0.6 0.1951803 0.1952164 0.1961720 0.1962049
0.8 0.1513412 0.1513677 0.1520955 0.1521192
1.0 0.1222063 0.1222270 0.1228010 0.1228193
2.0 0.0583247 0.0583340 0.0585820 0.0585908
3.0 0.0363930 0.0363984 0.0365445 0.0365503
4.0 0.0257537 0.0257569 0.0258585 0.0258627
5.0 0.0195999 0.0196019 0.0196897 0.0196929

0.50 0.2 0.7217743 0.7221274 0.7262087 0.7265602
0.4 0.5096391 0.5098601 0.5130789 0.5132927
0.6 0.3801237 0.3802578 0.3825668 0.3826935
0.8 0.2974718 0.2975600 0.2992745 0.2993563
1.0 0.2413887 0.2414510 0.2427774 0.2428345
2.0 0.1161169 0.1161368 0.1166851 0.1167032
3.0 0.0725761 0.0725862 0.0729200 0.0729291
4.0 0.0512751 0.0512838 0.0516357 0.0516409
5.0 0.0387059 0.0387164 0.0393314 0.0393345

0.75 0.2 0.7898351 0.7907277 0.8004290 0.8013336
0.4 0.6749730 0.6757356 0.6844310 0.6851563
0.6 0.5353687 0.5358003 0.5413735 0.5417684
0.8 0.4294112 0.4296684 0.4334433 0.4336737
1.0 0.3526947 0.3528614 0.3556061 0.3557529
2.0 0.1721416 0.1722090 0.1736876 0.1737197
3.0 0.1052453 0.1053407 0.1088740 0.1088884
4.0 0.0701635 0.0702622 0.0769100 0.0769291
5.0 0.0489550 0.0490357 0.0579139 0.0579440
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Table 3: Comparison of the HWCM solution and FDM solution for α = 2, j = 1
and ε = 0.1, 0.05, 0.01, 0.005 at different times t and x.

x t
u(x, t)

HWCM FDM HWCM FDM
ε = 0.1 ε = 0.05

0.25 0.2 0.4528947 0.4530076 0.4843711 0.4844762
0.4 0.3340788 0.3342115 0.3749329 0.3750457
0.6 0.2604422 0.2605847 0.3069631 0.3070730
0.8 0.2075421 0.2076866 0.2600208 0.2601290
1.0 0.1664093 0.1665460 0.2251935 0.2253036
2.0 0.0542853 0.0543373 0.1246904 0.1248154
3.0 0.0177153 0.0177229 0.0706156 0.0707061
4.0 0.0059262 0.0059182 0.0396061 0.0396562
5.0 0.0020284 0.0020150 0.0222823 0.0223051

0.50 0.2 0.7199254 0.7202749 0.7736452 0.7739859
0.4 0.5413433 0.5417245 0.6185650 0.6188992
0.6 0.4175751 0.4179407 0.5153752 0.5157088
0.8 0.3250077 0.3253298 0.4399164 0.4402609
1.0 0.2540243 0.2542924 0.3805254 0.3808806
2.0 0.0776199 0.0776969 0.1953196 0.1955939
3.0 0.0250847 0.0250955 0.1038516 0.1040015
4.0 0.0083820 0.0083708 0.0567600 0.0568347
5.0 0.0028686 0.0028497 0.0316487 0.0316816

0.75 0.2 0.6264105 0.6269270 0.7323974 0.7332051
0.4 0.4756745 0.4762611 0.6440543 0.6451882
0.6 0.3510169 0.3514890 0.5387584 0.5398593
0.8 0.2604508 0.2607999 0.4455024 0.4464743
1.0 0.1958994 0.1961535 0.3681514 0.3689670
2.0 0.0554990 0.0555556 0.1556991 0.1559931
3.0 0.0177598 0.0177675 0.0764906 0.0766130
4.0 0.0059278 0.0059199 0.0406777 0.0407332
5.0 0.0020284 0.0020150 0.0224764 0.0225001

ε = 0.01 ε = 0.005
0.25 0.2 0.5105786 0.5106768 0.5138261 0.5139236

0.4 0.4121276 0.4122331 0.4170524 0.4171569
0.6 0.3497798 0.3498836 0.3561311 0.3562347
0.8 0.3056630 0.3057624 0.3132191 0.3133200
1.0 0.2723769 0.2724709 0.2809017 0.2809991
2.0 0.1796682 0.1797364 0.1903981 0.1904765
3.0 0.1358182 0.1358691 0.1466789 0.1467417
4.0 0.1098848 0.1099247 0.1202931 0.1203445
5.0 0.0925553 0.0925898 0.1024592 0.1025021

0.50 0.2 0.8100523 0.8103532 0.8141415 0.8144371
0.4 0.6600078 0.6602336 0.6641056 0.6643237
0.6 0.5616494 0.5618314 0.5658449 0.5660202
0.8 0.4925377 0.4926943 0.4969601 0.4971111
1.0 0.4409447 0.4410846 0.4456593 0.4457944
2.0 0.2992386 0.2993367 0.3055537 0.3056512
3.0 0.2318738 0.2319559 0.2395078 0.2395875
4.0 0.1905133 0.1906009 0.1997534 0.1998213
5.0 0.1608477 0.1609491 0.1726899 0.1727498

0.75 0.2 0.8505220 0.8518072 0.8675212 0.8688478
0.4 0.8053124 0.8061938 0.8159282 0.8166348
0.6 0.7064960 0.7069569 0.7128052 0.7131723
0.8 0.6255118 0.6258176 0.6304414 0.6306904
1.0 0.5624665 0.5627032 0.5668848 0.5670779
2.0 0.3832456 0.3835065 0.3902102 0.3903163
3.0 0.2865587 0.2869737 0.3066685 0.3067717
4.0 0.2185100 0.2189222 0.2548806 0.2550426
5.0 0.1692750 0.1696113 0.2167176 0.2169456
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Table 4: Comparison of the HWCM solution and FDM solution for α = 2, j = 2
and ε = 0.1, 0.05, 0.01, 0.005 at different times t and x.

x t
u(x, t)

HWCM FDM HWCM FDM
ε = 0.1 ε = 0.05

0.25 0.2 0.4187385 0.4188396 0.4485032 0.4485973
0.4 0.2902983 0.2904100 0.3280608 0.3281571
0.6 0.2134813 0.2135922 0.2560097 0.2561017
0.8 0.1606390 0.1607409 0.2076148 0.2077046
1.0 0.1218622 0.1219492 0.1724709 0.1725601
2.0 0.0318867 0.0319062 0.0780948 0.0781649
3.0 0.0089768 0.0089727 0.0374784 0.0375134
4.0 0.0026898 0.0026785 0.0185771 0.0185895
5.0 0.0008463 0.0008325 0.0094973 0.0094975

0.50 0.2 0.6615450 0.6618527 0.7133077 0.7136176
0.4 0.4638673 0.4641711 0.5375510 0.5378512
0.6 0.3352542 0.3355144 0.4248405 0.4251313
0.8 0.2457882 0.2459944 0.3445913 0.3448717
1.0 0.1820340 0.1821905 0.2835205 0.2837832
2.0 0.0453533 0.0453818 0.1177835 0.1179153
3.0 0.0127013 0.0126956 0.0540526 0.0541069
4.0 0.0038041 0.0037881 0.0264171 0.0264352
5.0 0.0011969 0.0011773 0.0134515 0.0134519

0.75 0.2 0.5635353 0.5639462 0.6559812 0.6566117
0.4 0.3923610 0.3927623 0.5269125 0.5276935
0.6 0.2706703 0.2709609 0.4097215 0.4104027
0.8 0.1901735 0.1903723 0.3186327 0.3191753
1.0 0.1365276 0.1366636 0.2501433 0.2505615
2.0 0.0322543 0.0322750 0.0892260 0.0893458
3.0 0.0089857 0.0089816 0.0389860 0.0390277
4.0 0.0026900 0.0026787 0.0187830 0.0187963
5.0 0.0008464 0.0008325 0.0095260 0.0095263

ε = 0.01 ε = 0.005
0.25 0.2 0.4732031 0.4732905 0.4762631 0.4763498

0.4 0.3615783 0.3616651 0.3659733 0.3660592
0.6 0.2932951 0.2933751 0.2986737 0.2987531
0.8 0.2464687 0.2465412 0.2525810 0.2526537
1.0 0.2121445 0.2122100 0.2187750 0.2188414
2.0 0.1225112 0.1225520 0.1297743 0.1298186
3.0 0.0841735 0.0842019 0.0908736 0.0909052
4.0 0.0630663 0.0630895 0.0691458 0.0691694
5.0 0.0495985 0.0496202 0.0553596 0.0553779

0.50 0.2 0.7490511 0.7493305 0.7530769 0.7533516
0.4 0.5794545 0.5796626 0.5834873 0.5836873
0.6 0.4725852 0.4727485 0.4765814 0.4767366
0.8 0.3993662 0.3995019 0.4033976 0.4035257
1.0 0.3458978 0.3460149 0.3500042 0.3501141
2.0 0.2063116 0.2063888 0.2110088 0.2110746
3.0 0.1446658 0.1447430 0.1506666 0.1507140
4.0 0.1082401 0.1083210 0.1166734 0.1167125
5.0 0.0834973 0.0835726 0.0946236 0.0946608

0.75 0.2 0.7604571 0.7615018 0.7763880 0.7774979
0.4 0.6837758 0.6847965 0.6988899 0.6997210
0.6 0.5805158 0.5811994 0.5912271 0.5916892
0.8 0.4975600 0.4980881 0.5065717 0.5068804
1.0 0.4333128 0.4337788 0.4420488 0.4422819
2.0 0.2499374 0.2503959 0.2686685 0.2688179
3.0 0.1582619 0.1586006 0.1892567 0.1894588
4.0 0.1063545 0.1065700 0.1402960 0.1405077
5.0 0.0753124 0.0754506 0.1069869 0.1071662
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Table 5: Comparison of the HWCM solution and exact solution for α = 1, j = 0
and ε = 0.1, 0.05, 0.01, 0.005 at different times t and x.

x t
u(x, t)

HWCM FDM HWCM FDM
ε = 0.1 ε = 0.05

0.25 0.2 0.1627137 0.1625649 0.1823093 0.1821455
0.4 0.0683010 0.0682061 0.1033053 0.1032236
0.6 0.0272652 0.0272023 0.0671050 0.0670443
0.8 0.0104604 0.0104201 0.0439536 0.0439027
1.0 0.0039526 0.0039245 0.0282842 0.0282411
2.0 0.0005678 0.0005481 0.0111740 0.0111433
3.0 0.0000463 0.0000284 0.0026285 0.0026068
4.0 0.0000217 0.0000039 0.0009961 0.0009767
5.0 0.0000180 0.0000002 0.0002410 0.0002228

0.50 0.2 0.2921908 0.2919160 0.3592228 0.3589297
0.4 0.1080589 0.1078901 0.1964300 0.1962525
0.6 0.0403025 0.0402049 0.1180458 0.1179171
0.8 0.0150437 0.0149846 0.0719243 0.0718280
1.0 0.0056252 0.0055849 0.0439108 0.0438373
2.0 0.0008037 0.0007758 0.0163844 0.0163377
3.0 0.0000655 0.0000402 0.0037487 0.0037174
4.0 0.0000307 0.0000056 0.0014132 0.0013855
5.0 0.0000254 0.0000003 0.0003410 0.0003153

0.75 0.2 0.2877731 0.2874744 0.4851991 0.4848389
0.4 0.0867329 0.0865786 0.2201513 0.2198857
0.6 0.0298481 0.0297721 0.1110480 0.1108935
0.8 0.0108207 0.0107774 0.0603844 0.0602892
1.0 0.0040030 0.0039741 0.0344180 0.0343542
2.0 0.0005688 0.0005491 0.0120285 0.0119929
3.0 0.0000463 0.0000284 0.0026733 0.0026508
4.0 0.0000217 0.0000039 0.0010025 0.0009828
5.0 0.0000180 0.0000002 0.0002413 0.0002231

ε = 0.01 ε = 0.005
0.25 0.2 0.1883804 0.1881940 0.1889774 0.1887881

0.4 0.1074645 0.1073814 0.1076840 0.1076005
0.6 0.0751607 0.0751141 0.0752724 0.0752266
0.8 0.0577881 0.0577582 0.0578548 0.0578265
1.0 0.0469385 0.0469174 0.0469824 0.0469634
2.0 0.0341160 0.0341030 0.0341473 0.0341375
3.0 0.0240792 0.0240695 0.0242216 0.0242168
4.0 0.0199246 0.0199150 0.0202894 0.0202858
5.0 0.0153857 0.0153752 0.0163106 0.0163076

0.50 0.2 0.3747644 0.3744200 0.3760744 0.3757228
0.4 0.2147271 0.2145581 0.2151822 0.2150117
0.6 0.1502777 0.1501790 0.1505061 0.1504083
0.8 0.1155605 0.1154948 0.1157006 0.1156373
1.0 0.0938445 0.0937961 0.0939645 0.0939201
2.0 0.0679596 0.0679265 0.0682987 0.0682728
3.0 0.0469168 0.0468901 0.0484369 0.0484214
4.0 0.0378185 0.0377930 0.0405376 0.0405245
5.0 0.0278352 0.0278103 0.0324509 0.0324388

0.75 0.2 0.5564758 0.5560507 0.5588247 0.5583839
0.4 0.3215393 0.3212820 0.3222837 0.3220245
0.6 0.2249789 0.2248112 0.2256548 0.2254976
0.8 0.1718995 0.1717713 0.1735189 0.1734119
1.0 0.1374126 0.1373069 0.1409118 0.1408316
2.0 0.0936860 0.0936092 0.1021658 0.1021091
3.0 0.0568555 0.0568039 0.0711782 0.0711338
4.0 0.0420047 0.0419626 0.0581392 0.0580996
5.0 0.0276024 0.0275691 0.0441670 0.0441329
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Table 6: Error values of the solution of the non-planar Burgers equation for α = 1,
j = 0 and ε = 0.1, 0.05, 0.01, 0.005 at different times t.

t
µ(t)

L2 L∞ L2 L∞
ε = 0.1 ε = 0.05

1.0 1.912E-05 2.462E-06 2.185E-05 2.815E-06
2.0 1.094E-05 10398E-06 1.470E-05 2.074E-06
3.0 6.131E-06 7.691E-07 9.288E-06 1.250E-06
4.0 3.694E-06 4.619E-07 6.398E-06 8.286E-07
5.0 2.522E-06 3.152E-07 4.074E-06 5.967E-07
7.0 1.746E-06 2.182E-07 2.931E-06 3.671E-07
10.0 1.581E-06 1.976E-07 1.953E-06 2.441E-07
12.0 1.571E-06 1.963E-07 1.731E-06 2.163E-07
15.0 1.569E-06 1.961E-07 1.612E-06 2.015E-07

ε = 0.01 ε = 0.005
1.0 4.569E-05 1.704E-05 5.612E-05 4.413E-05
2.0 2.279E-05 5.866E-06 3.302E-05 1.455E-05
3.0 1.323E-05 2.881E-06 1.714E-05 5.894E-06
4.0 8.821E-06 1.742E-06 1.076E-05 3.185E-06
5.0 6.433E-06 1.189E-06 7.532E-06 1.991E-06
7.0 4.069E-06 6.876E-07 4.486E-06 1.021E-06
10.0 2.659E-06 4.104E-07 2.725E-06 5.429E-07
12.0 2.232E-06 3.285E-07 2.183E-06 4.091E-07
15.0 1.895E-06 2.637E-07 1.739E-06 3.035E-07

8 Conclusion

The present work is the most general study for non-planar Burgers
equation. We obtain single hump solution for ε = 0.1, 0.05, 0.01, 0.005 and
shocks are observed for smaller ε for both cylindrical and spherical geome-
tries. We recover the work of Ram Jiwari [12] for j = 0 and α = 1. They
have not identified shocks whereas we have gone beyond and identified dis-
continuities for j = 0 and α = 1, 2. The work of Ram Jiwari [12] was a
particular case of our work. In the limiting cases, we have also compared
the HWCM solution with the existing exact solution and they are found to
be in good agreement. We conclude that Haar wavelet collocation method
is more efficient to capture discontinuities accurately with less number of
grid points whereas this observation is not reported by other conventional
methods.
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Appendix 1: Quasilinearization Technique

In order to solve the individual or systems of nonlinear ordinary and par-
tial differential equations, Bellman and Kalaba [2] introduced the quasi-
linearization approach as a generalization of the Newton-Raphson method.
This technique has quadratic rate of convergence.

Equation (5) can be rewritten in the form

ut +
ju

2(t+ 1)
= εuxx − g(u, ux), (36)

where g(u, ux) = uαux.
The following approximation scheme is obtained by application of quasi-

linearization technique to equation (36):

(us+1)t +

(
ju

2(t+ 1)

)
s+1

= ε(us+1)xx − g(us, (us)x)− (us+1

−us)gu(us, (us)x)− ((us+1)x − (us)x)gux(us, (us)x).

(37)

Thus the nonlinear non-planar Burgers equation (5) followed by quasilin-
earization leads to equation (5.1).

Appendix 2: Thomas Algorithm

Thomas algorithm [4] is a computational procedure to solve tridiagonal
system of equations. This algorithm is a simplified form of Gaussian elim-
ination. For each s = 1, 2, . . . , N , the tridiagonal system of equations in
equation (25) can be rewritten in the form

b1u(x1, ts+1) + c1u(x2, ts+1) = w1,

vlu(xl−1, ts+1) + blu(xl, ts+1) + clu(xl+1, ts+1) = wl; l = 2, 3, . . . , r − 2,

vr−1u(xr−2, ts+1) + br−1u(xr−1, ts+1) = wr−1,
(38)

where

bl =
α

∆x
uα−1(xl, ts)u(xl+1, ts)−

(α+ 1)

∆x
uα(xl, ts) +

j

2(ts+1 + 1)

+
2ε

(∆x)2
+

1

∆t
, l = 1, 2, . . . , r − 1, (39)

vl = − ε

(∆x)2
, l = 2, 3, . . . , r − 1, (40)
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cl =
1

∆x
uα(xl, ts)−

ε

(∆x)2
, l = 1, 2, . . . , r − 2, (41)

w1 =
1

∆t
u(x1, ts) +

α

∆x
[u(x2, ts)− u(x1, ts)]u

α(x1, ts)

+
ε

(∆x)2
u(x0, ts+1), (42)

wl =
1

∆t
u(xl, ts) +

α

∆x
[u(xl+1, ts)− u(xl, ts)]u

α(xl, ts),

l = 2, 3, . . . , r − 2, (43)

wr−1 =
1

∆t
u(xr−1, ts) +

α

∆x
[u(xr, ts)− u(xr−1, ts)]u

α(xr−1, ts)

−
[

1

∆x
uα(xr−1, ts)−

ε

(∆x)2

]
u(xr, ts+1). (44)

The coefficient matrix of the system of equation in (38) is

B =



b1 c1 0 · · · 0

v2 b2 c2
. . .

...

0 v3 b3
. . . 0

...
. . .

. . .
. . . cr−2

0 · · · 0 vr−1 br−1


. (45)

The Thomas algorithm to solve the tridiagonal system of equations in (38)
can be described in three steps:

1. γ1 = b1,

γl = bl −
vlcl−1

γl−1
; l = 2, 3, . . . , r − 1.

2. β1 =
w1

b1
,

βl =
wl − vlβl−1

γl
l = 2, 3, . . . , r − 1.

3. u(xr−1, ts+1) = βr−1,

u(xl, ts+1) = βl −
clu(xl+1, ts+1)

γl
; l = r − 2, r − 3, . . . , 1.
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