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Abstract. In this paper a robust and accurate algorithm based on Haar
wavelet collocation method (HWCM) is proposed for solving eighth order
boundary value problems. We used the Haar direct method for calculating
multiple integrals of Haar functions. To illustrate the efficiency and accu-
racy of the concerned method, few examples are considered which arise in
the mathematical modeling of fluid dynamics and hydromagnetic stability.
Convergence and error bound estimation of the method are discussed. The
comparison of results with exact solution and existing numerical methods
such as Quintic B-spline collocation method and Galerkin method with
Quintic B-splines as basis functions shown that the HWCM is a powerful
numerical method for solution of above mentioned problems.
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1 Introduction

The wavelets have many applications in science and engineering since from
its inception. Different families of wavelets are Haar, Daubechies, Coiflet,
biorthogonal spline, Symlet etc. Alfred Haar [6] introduced the wavelets,

∗Corresponding author.
Received: 17 December 2016 / Revised: 15 May 2017 / Accepted: 15 May 2017.

c© 2017 University of Guilan http://jmm.guilan.ac.ir



62 A. Padmanabha Reddy, M. Harageri and C. Sateesha

which are yielded from pairs of piecewise constant functions. These func-
tions are symmetric, orthogonal, compactly supported and have explicit
expression for scaling functions [14, 20]. Due to these properties Haar
wavelets act as mathematical tool in the numerical solution of differen-
tial equations, integral equations and signal processing. The operational
matrix method was derived by Chen and Hsiao [4, 5] to solve problems of
dynamical systems. Lepik [15] improved the method through integration
of Haar wavelets, where as this method can be used for solving higher or-
der ordinary differential equations (ODEs), integral equations and integro-
differential equations.

Some researchers applied the Haar wavelet collocation method (HWCM)
to various boundary value problems(BVPs). Siraj-ul-Islam et al. [11] esti-
mated the numerical solution of second order BVPs. Fazal-i-Haq et al. [7,8]
found the solution of the fourth and sixth order BVPs. Reddy et al. [18,19]
solved the fifth and seventh order ODEs arising in modeling viscoelastic
flow and induction motors. Harpreet Kaur et al. [10] solved nonlinear BVPs
having quadratic factor on dependent variable. Further applications of this
method has been listed and illustrated by Hariharan and Kannan [9]. These
studies motivated us to develop HWCM for eighth order BVPs, which arise
in various fields.

The eighth order BVPs arise in many applications viz. hydrodynamics,
hydromagnetic stability theory, fluid dynamics, beam and long wave the-
ory, astrophysics, etc. Chandrasekhar [3] explained the infinite horizontal
layer of fluid heated from below under the condition of effect of rotation.
In dealing the case, when instability sets in as stationary convection, basic
equations are modeled by sixth order differential equations which contained
Rayleigh number and Taylor number. When instability sets as an over sta-
bility, system results into eighth-order ODEs. Shen [21] derived the eighth
order differential equation by bending and axial vibrations of an elastic
beam with the intelligent constrained layer treatment. Agarwal [1] dis-
cussed the existence and uniqueness for the solution of higher order ODEs.
Viswanadham et al. [12, 13] devised the solution of eighth order BVPs by
Quintic B-spline collocation method (QBCM) and Galerkin method (GM)
with Quintic B-splines as basis functions.

The main goal of this work is to construct a simple collocation method
combining with Haar family for the numerical solution of linear and non-
linear eighth order BVPs arising in mathematical modeling of various appli-
cations. We mainly focus on the following type of boundary value problems
to test the simplicity and applicability of the HWCM.
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The following form of eighth order BVP is considered

y(8)(x) = f(x, y, y(1), y(2), y(3), y(4), y(5), y(6), y(7)), x ∈ (a, b), (1)

subject to the following type of boundary conditions:

y(a) = α1, y(b) = β1, y(1)(a) = α2, y(1)(b) = β2,

y(2)(a) = α3, y(2)(b) = β3, y(3)(a) = α4, y(3)(b) = β4,
(2)

where αi,βi, a and b are real constants for i = 1, 2, 3, 4.

The organization of this article is as follows in Section 2, Haar wavelets
and their integrals are introduced. In Section 3, a general formulation for
the numerical algorithm based on Haar wavelets is presented. Error bound
and convergence issues are discussed in Section 4. Few problems are solved
in Section 5 to test the effectiveness of the method and conclusion presented
in the last section of this paper.

2 Haar wavelets and their integrals

In this section, we use orthogonal basis for the subspaces of L2[a, b] called
Haar wavelet family. The interval [a, b] is divided into 2J+1 subintervals
of equal length (∆t), where J is called maximal level of resolution. We
have coarser resolution values j = 0, 1, . . . , J −1 and translation parameter
k = 0, 1, . . . , 2j − 1 [14]. With these two parameters, ith Haar wavelet in
Haar family is defined as

hi(t) =


1, for t ∈ [ξ1(i), ξ2(i)),

−1, for t ∈ [ξ2(i), ξ3(i)),

0, otherwise,

(3)

where i = m + k + 1, ξ1(i) = a + 2kµ∆t, ξ2(i) = a + (2k + 1)µ∆t,
ξ3(i) = a + 2(k + 1)µ∆t and µ = 2J−j . Eq. (3) is valid for i > 2, h1(t)
and h2(t) are called father and mother wavelets in Haar family, which are
defined as

h1(t) =

{
1, if t ∈ [a, b),

0, otherwise,
(4)

h2(t) =


1, if t ∈ [a, a+b2 ),

−1, if t ∈ [a+b2 , b),

0, otherwise.

(5)
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As a consequence of Haar multiresolution analysis any function which is
having finite energy on [a, b] i.e. f ∈ L2[a, b] can be decomposed as infinite
sum of Haar wavelets:

f(x) =
∞∑
i=1

aihi(x),

where ai are called Haar coefficients. The above series terminates to finite
if f(x) is piecewise constant or approximated by piecewise constant during
each subinterval. Since we have an explicit expression for each member of
Haar family (3-5), we can integrate as multiple times depending upon the
application. The following notations are introduced

pγ,i(t) =

∫ t

a

∫ t

a
· · ·
∫ t

a
hi(x)dxγ (6)

and

Eγ,i =

∫ b

a
pγ,i(t)dt. (7)

For i = 1, Eq.(6) becomes

pγ,1(t) =
1

γ!
(t− a)γ , (8)

and for i ≥ 2, we get

pγ,i(t) =


0, t ∈ [a, ξ1(i)),
1
γ!(t− ξ1(i))

γ , t ∈ [ξ1(i), ξ2(i)),
1
γ! {(t− ξ1(i))

γ − 2(t− ξ2(i))γ} , t ∈ [ξ2(i), ξ3(i)),
1
γ! {(t− ξ1(i))

γ − 2(t− ξ2(i))γ + (t− ξ3(i))γ} , t ∈ [ξ3(i), b).

(9)

3 Method of solution

3.1 Haar wavelet collocation method:

In previous section we have seen that each Haar function in Haar family
(3-5) is piecewise constant and not continuous on [0, 1). Hence it can not
be differentiated at the points of discontinuity. But we can integrate each
member many times as noticed from Eq. (6) to (8). Due to this reason
we expand the highest derivative in the differential equation (1) into Haar
series. Other derivatives are obtained through integration. The proposed
method is illustrated with the following four steps [14,18,19].
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1. For a given resolution J , approximate the highest derivative in Eq.(1)
by piecewise constant on each subinterval

y(8)(x) =
2J+1∑
i=1

aihi(x). (10)

2. Decompose y(7)(x), y(6)(x),. . . ,y(x) in terms of integrated Haar func-
tions and replace these into the given linear differential equation.

3. Discritize equation obtained in step (2) at collocation points

xl =
(x̃l + x̃l−1)

2
, l = 1, 2, . . . , 2J+1,

where x̃c is the grid point given by

x̃c = a+ c
(b− a)

2J+1
, c = 0, 1, 2, . . . , 2J+1.

It results into a2J+1 × 2J+1 linear algebraic system of equations.

4. Calculate the wavelet coefficients ai and obtain the Haar solution for
the unknown function y.

The proposed method is further simplified with the help of particular
boundary conditions for BVPs with a = 0, b = 1.

3.2 Constructing the boundary conditions

The following type of boundary conditions is considered

y(0) = α1, y(1) = β1, y(1)(0) = α2, y(1)(1) = β2,

y(2)(0) = α3, y(2)(1) = β3, y(3)(0) = α4, y(3)(1) = β4.
(11)

The approximate solution y(x) can be derived as

y(x) = α1 + α2x+ α3
x2

2 + α4
x3

6 + y(4)(0)x
4

24 + y(5)(0) x
5

120

+y(6)(0) x
6

720 + y(7)(0) x7

5040 +

2J+1∑
i=1

aip8,i(x).
(12)
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Using boundary conditions Eq. (11), y(4)(0), y(5)(0), y(6)(0), y(7)(0)
are calculated as

y(4)(0) = −840α1 − 480α2 − 120α3 − 16α4

+840β1 − 360β2 + 60β3 − 4β4

+
∑2J+1

i=1 ai(−840E8,i + 360E7,i − 60E6,i + 4E5,i),

(13)

y(5)(0) = 10080α1 + 5400α2 + 1200α3+
120α4 − 10080β1 + 4680β2 − 840β3 + 60β4

+
∑2J+1

i=1 ai(10080E8,i − 4680E7,i + 840E6,i − 60E5,i),

(14)

y(6)(0) = −50400α1 − 25920α2 − 5400α3 − 480α4

+50400β1 − 24480β2 + 4680β3 − 360β4

+
∑2J+1

i=1 ai(−50400E8,i + 24480E7,i − 4680E6,i + 360E5,i),

(15)

y(7)(0) = 100800α1 + 50400α2 + 10080α3 + 840α4

−100800β1 + 50400β2 − 10080β3 + 840β4

+
∑2J+1

i=1 ai(100800E8,i − 50400E7,i + 10080E6,i − 840E5,i),

(16)

where

E5,i =

∫ 1

0
p5,i(x)dx, E6,i =

∫ 1

0
p6,i(x)dx,

E7,i =

∫ 1

0
p7,i(x)dx, E8,i =

∫ 1

0
p8,i(x)dx.

(17)

4 Covergence analysis of Haar wavelet discretiza-
tion method(HWDM)

The accuracy issues of the HWDM, open from year 1997 were clarified by
Majak et al. [16] in 2015. The following results are due to notations in-
troduced by Majak et al. [17]. Consider the following general form of ODE:

f(x, y, y(1), y(2), y(3), y(4), y(5), y(6), y(7), y(8)) = 0. (18)

Expansion of the eighth order derivative in terms of Haar wavelet series
can be written as:

d8y(x)

dx8
=

∞∑
i=1

aihi(x) = a1h1(x) +

∞∑
j=0

2j−1∑
k=0

a2j+k+1 h2j+k+1(x). (19)

In Eq. (19) 2j + k+ 1 = i, k = 0, 1, . . . , 2j − 1. Integrating Eq. (19) eight
times from 0 to x we obtain the solution of ODE (18) as

y(x) =
a1
8!

+
∞∑
j=0

2j−1∑
k=0

a2j+k+1 p8,2j+k+1(x) +B(x). (20)
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Here p8,2j+k+1(x) is the eighth order integrals of the Haar functions found
by using Eq. (9) and B(x) is a boundary term.

Let us assume that d8y
dx8
∈ L2(R) is continuous and its next derivative is

bounded on [0, 1], i.e. ∃ ρ > 0 such that
∣∣∣ d9ydx9

∣∣∣ ≤ ρ.
Let

y2J+1(x) =
a1
8!

+
J∑
j=0

2j−1∑
k=0

a2j+k+1 p8,2j+k+1(x) +B(x),

be the approximation to the solution y. The absolute error at the J th

resolution is denoted as
∣∣E2J+1

∣∣ and given by

∣∣E2J+1

∣∣ =
∣∣y(x)− y2J+1(x)

∣∣ =

∣∣∣∣∣
∞∑

j=J+1

2j−1∑
k=0

a2j+k+1 p8,2j+k+1(x)

∣∣∣∣∣. (21)

Norm of the error in Hilbert space L2(R) [16] is defined as

‖E2J+1‖22 =

∫ 1

0

( ∞∑
j=J+1

2j−1∑
k=0

a2j+k+1 p8,2j+k+1(x)
)2
dx

=
∞∑

j=J+1

2j−1∑
k=0

∞∑
r=J+1

2r−1∑
s=0

a2j+k+1a2r+s+1

×
∫ 1

0
p8,2j+k+1(x) p8,2r+s+1(x)dx.

(22)

Majak et al. [16] have shown that |a2j+k+1| ≤ ρ
2j+1 , for k = 0, 1, . . . , 2j − 1

and p8,i(x) are monotonically increasing on [0, 1). Therefore,

‖E2J+1‖22 ≤
ρ2

4

∞∑
j=J+1

2j−1∑
k=0

∞∑
r=J+1

2r−1∑
s=0

1

2j
1

2r

[
1

720

( 1

2j+1

)2
+ 1

288

(
1

2j+1

)4
+ 1

720

(
1

2j+1

)6
+ 1

20160

(
1

2j+1

)8][
1

720

(
1

2r+1

)2
+ 1

288

(
1

2r+1

)4
+ 1

720

(
1

2r+1

)6
+ 1

20160

(
1

2r+1

)8]
.

(23)

Above inequality can be simplified as

‖E2J+1‖2 ≤ η
4320

[(
1

2J+1

)2
+ 1

2

(
1

2J+1

)4
+ 1

21

(
1

2J+1

)6
+ 1

2380

(
1

2J+1

)8]
.

(24)



68 A. Padmanabha Reddy, M. Harageri and C. Sateesha

Therefore,

‖E2J+1‖2 = O
[( 1

2J+1

)2]
. (25)

From Eq. (25), we can conclude that the convergence is of order two.

5 Numerical studies

In this section we consider five test problems whose exact solutions are
known arising in fluid mechanics, beam and long wave theory, applied
mathematics [1, 3, 12, 13, 21]. The Haar solution and exact solution are
represented in graphs that are compared with the QBCM and GM.

Example 1. Consider the following linear boundary value problem

y(8)(x) = y(x)− 8ex, x ∈ (0, 1), (26)

with boundary conditions:

y(0) = 1, y(1) = 0, y(1)(0) = 0, y(1)(1) = −e,
y(2)(0) = −1, y(2)(1) = −2e, y(3)(0) = −2, y(3)(1) = −3e.

(27)

Exact solution of this problem is (1−x)ex. In Figure 1 , the comparison of
exact and approximate solution for J = 3 is represented. The comparison
of absolute errors of the HWCM for J = 1, with QBCM [12] is shown in
Table 1.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 

Exact solution

Haar solution

Figure 1: Comparison of exact and approximate solutions of Example 1 for
J = 3.
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Table 1: Comparison of QBCM and HWCM results for Example 1.

x Exact Approx. Abs. error Abs. error
solution solution by HWCM by QBCM [12]

0.1 0.9947 0.9947 6.3E-11 5.9E-07
0.2 0.9771 0.9771 6.5E-10 6.5E-07
0.3 0.9449 0.9449 2.0E-09 1.2E-07
0.4 0.8951 0.8951 3.3E-09 9.5E-07
0.5 0.8244 0.8244 3.9E-09 2.0E-06
0.6 0.7288 0.7288 3.4E-09 3.6E-06
0.7 0.6041 0.6041 2.0E-09 5.0E-06
0.8 0.4451 0.4451 6.9E-10 4.3E-06
0.9 0.2460 0.2466 7.6E-11 2.1E-06

Example 2. The following linear boundary value problem is considered

y(8)(x) + (48 + 15x+ x3)ex + xy(x) = 0, x ∈ (0, 1), (28)

with boundary conditions:

y(0) = 0, y(1) = 0, y(1)(0) = 1, y(1)(1) = −e,
y(2)(0) = 0, y(2)(1) = −4e, y(3)(0) = −3, y(3)(1) = −9e.

(29)

Exact solution of this problem is x(1−x)ex. In Figure 2, the comparison of
exact and approximate solution for J = 4 is represented. Errors related to
this problem obtained by HWCM for J = 1 are compared with QBCM [12]
and GM [13] are inserted in Table 2.

Example 3. We consider the nonlinear boundary value problem

y(8)(x)− e−xy2(x) = 0, x ∈ (0, 1), (30)

with boundary conditions:

y(0) = 1, y(1) = e, y(1)(0) = 1, y(1)(1) = e,

y(2)(0) = 1, y(2)(1) = e, y(3)(0) = 1, y(3)(1) = e.
(31)

Exact solution of this problem is ex. The nonlinear boundary value problem
Eq. (30) is converted into a sequence of linear boundary value problems
with the aid of quasilinearization technique [2]. The comparison of exact
and approximate solution for J = 5 is represented in Figure 3. Errors
obtained by HWCM for J = 1 are compared with QBCM [12] are tabulated
in Table 3.
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Figure 2: Comparison of exact and approximate solutions of Example 2 for
J = 4.

Table 2: Comparison of QBCM, GM and HWCM results for Example 2.

x Exact Approx. Abs. error Abs. error Abs. error
solution solution by HWCM by QBCM [12] GM [13]

0.1 0.0995 0.0995 6.0E-10 2.4E-07 5.2E-08
0.2 0.1954 0.1954 6.2E-09 8.2E-07 2.2E-06
0.3 0.2835 0.2835 1.8E-08 1.9E-06 7.0E-06
0.4 0.3580 0.3580 3.2E-08 4.3E-06 1.1E-05
0.5 0.4122 0.4122 3.7E-08 6.2E-06 1.2E-05
0.6 0.4373 0.4373 3.2E-08 7.2E-06 8.8E-06
0.7 0.4229 0.4229 1.9E-08 7.0E-06 2.5E-06
0.8 0.3561 0.3561 6.6E-09 5.0E-06 1.8E-06
0.9 0.2214 0.2214 7.2E-10 2.4E-06 2.0E-06

Example 4. The following linear boundary value problem is considered

y(8)(x) = y(x)− 8(2x cos(x) + 7 sin(x)), x ∈ (0, 1), (32)

subject to the boundary conditions:

y(0) = 0, y(1) = 0, y(1)(0) = 0, y(1)(1) = 2sin(1),

y(2)(0) = 0, y(2)(1) = 4 cos(1) + 2 sin(1), y(3)(0) = 7,

y(3)(1) = 6 cos(1)− 6 sin(1).

(33)

Analytic solution of this problem is (x2 − 1)sin(x). In Figure 4, exact and
approximate solutions for J = 3 is shown. The comparison of exact and
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Figure 3: Comparison of exact and approximate solutions of Example 3 for
J = 5.

Table 3: Comparison of QBCM, GM and HWCM results for Example 3.

x Exact Approx. Abs. error Abs. error
solution solution by HWCM by QBCM [12]

0.1 1.1052 1.1052 6.6E-12 1.2E-07
0.2 1.2214 1.2214 6.9E-11 1.2E-05
0.3 1.3499 1.3499 2.1E-10 4.5E-05
0.4 1.4918 1.4918 3.5E-10 8.2E-05
0.5 1.6487 1.6487 4.1E-10 1.0E-04
0.6 1.8221 1.8221 3.5E-10 6.6E-05
0.7 2.0138 2.0138 2.1E-10 6.6E-05
0.8 2.2255 2.2255 7.2E-11 3.1E-05
0.9 2.4596 2.4596 8.0E-12 1.2E-05

approximate solution for J = 1 is shown in Table 4.

Example 5. Consider the nonlinear boundary value problem

y(8)(x) + e−xy2(x) = e−x + e−3x, x ∈ (0, 1), (34)

with the boundary conditions:

y(0) = 1, y(1) = 1
e , y(1)(0) = −1, y(1)(1) = −1

e , y(2)(0) = 1,

y(2)(1) = 1
e , y(3)(0) = −1, y(3)(1) = −1

e .
(35)
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Figure 4: Comparison of exact and approximate solution of Example 4 for
J = 3.

Table 4: Comparison of numerical results for Example 4.

x Exact solution Approx. solution Abs. error

0.1 -0.0988 -0.0988 2.0E-10
0.2 -0.1907 -0.1907 2.0E-09
0.3 -0.2689 -0.2689 5.9E-09
0.4 -0.3271 -0.3271 1.0E-08
0.5 -0.3596 -0.3596 1.3E-08
0.6 -0.3614 -0.3614 1.1E-08
0.7 -0.3286 -0.3286 6.8E-09
0.8 -0.2582 -0.2582 2.4E-09
0.9 -0.1488 -0.1488 2.3E-10

Exact solution of this problem is e−x. In Figure 5, comparison of exact
and approximate solutions for J = 4 is represented. The comparison of
absolute errors of HWCM for J = 1, with GM [13] is inserted in Table 5.

6 Conclusion

In this paper, Haar wavelet collocation method is applied to find the so-
lution for eighth order BVPs. Nonlinear BVPs are solved with the aid
of quasilinearization technique. From the convergence analysis we noticed
that, the rate of convergence of proposed method is of order two. The exact
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Figure 5: Comparison of exact and approximate solutions of Example 5 for
J = 4.

Table 5: Comparison of GM and HWCM results for Example 5.

x Exact Approx. Abs. error Abs. error
solution solution by HWCM by GM [13]

0.1 0.9048 0.9048 2.9E-12 3.6E-07
0.2 0.8187 0.8187 2.7E-11 6.3E-06
0.3 0.7408 0.7408 7.6E-11 1.9E-05
0.4 0.6703 0.6703 1.3E-10 3.1E-05
0.5 0.6065 0.6065 1.5E-10 3.6E-05
0.6 0.5488 0.5488 1.3E-10 3.2E-05
0.7 0.4965 0.4965 7.6E-11 1.9E-05
0.8 0.4493 0.4493 2.5E-11 7.2E-06
0.9 0.4065 0.4065 2.4E-12 1.5E-06

and Haar solution in graphs and tables(first three columns of each table)
showed that they are almost the same. The comparison of absolute errors
obtained by HWCM with QBCM and GM showed that we achieved better
accuracy even for lower resolution J = 1. These observations ensured that
HWCM has given accurate results for small number of grid points. There-
fore HWCM is computationally efficient and results are more accurate.
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