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Abstract. In mathematical modeling, determining most influential pa-
rameters on outputs is of major importance. Thus, sensitivity analysis of
parameters plays an important role in model validation. We give detailed
procedure of constructing a new derivative estimator for general perfor-
mance measure in Gaussian systems. We will take advantage of using score
function and measure-value derivative estimators in our approach. It is
shown that the proposed estimator performs better than other estimators
for a dense class of test functions in the sense of having smaller variance.
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1 Introduction

Parameter estimation is a popular estimation problem in statistics and has
been carried out by using many different methods. It has many applications
such as determining how much each parameter contributes to the output
variability from sensitivity analysis viewpoint. As in econometric studies
fluctuations are measured by the variance component, it might be of inter-
est to consider system sensitivity with respect to the variance component.
Thus, the primary purpose of this study is to consider the performance of
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scale parameter estimators comparatively and propose a new estimator at
second hand.

More precisely, let X be a random variable with normal distribution
N (µ, σ2). In sensitivity analysis the derivative estimator to measure the
system sensitivity w.r.t the scale parameter is defined as

d

dσ
E[g(X)] =

d

dσ

(
1√
2πσ

∫ ∞
−∞

g(x)e−
(x−µ)2

2σ2 dx

)
,

where g(.) is a Borel measurable function with finite expectation.

There are three known procedures to derive the derivative estimator,
namely the infinite perturbation analysis (IPA), the score function (SF) and
the measure-valued derivatives (MVD), see for example Ho and Cao [11],
Pflug [12], and Rubinstein [15] for more details. It is also worthwhile to
mention that Heidergott et al. [10] defined another estimator namely cou-
pled phantoms which interestingly performed better than IPA, SF and MV
derivative estimators in the sense of having smaller variance. In this paper,
we consider a different scheme by combining the methodologies behind the
constructions of SF and MV derivative estimators to define a new estimator.

2 Sensitivity estimators

In this section, first we briefly review the three existing methods for the
construction of derivative estimator and propose the new approach. In this
regard, Ho and Cao [11] and Glasserman [5] treated IPA in the context
of queueing systems. We also refer to Cao [2] for further studies. Fu and
Hu [4] applied IPA and SPA estimators in inventory control and finance.
The LR/SF method was introduced by Reiman and Weiss [13], Rubinstein
[14], Glynn [7] and is treated in depth by Rubinstein and Shapiro [15].
Glasserman [6] also discussed both IPA (known as the pathwise method)
and the LR/SF method from a financial viewpoint. The WD method was
introduced by Pflug [12] and it has been put into a more general framework
of “measure-valued differentiation”, see for example [8].

2.1 Some existing estimators

The IPA derivative estimator is a derivative estimator for which the control
parameter is present in the performance function (Glasserman, [5]).

Let Z be distributed according to the Gaussian law N (0, 1); then X =
σZ + µ is N (µ, σ2) where µ ∈ R , σ ∈ R+. For a differentiable function
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g : R→ R, using Stein’s identity (Stein, [16]) we have

d

dσ
E[g(X)] =

d

dσ
E[g(σZ + µ)]

= E[Zg′(σZ + µ)],

where g′(.) is the first derivative of g. Furthermore assume that g(.) is
Lipschitz continuous almost surely.

The IPA estimator is then defined by

D(IPA)[g(X)] =
(X − µ)

σ
g′(X). (1)

For µ = 0, the variance of the IPA estimator is given as

Var(D(IPA)[g(X)]) = E[Z2(g′(σZ))2]− E2[Zg′(σZ)]. (2)

The SF derivative estimator is a distributional approach to derivative esti-
mation, see for example Rubinstein and Shapiro [15] for more details.

Let d
dσφµ,σ(x) denote the derivative of the standard normal density w.r.t

σ. If for an open neighborhood U of σ the following condition holds

E
[
|g(X)| sup

σ̂∈U

∣∣ d
dσ

log φµ,σ(X)
∣∣]<∞, (3)

then it follows that

d

dσ
E[g(X)] =

d

dσ

(
1√
2πσ

∫ ∞
−∞

g(x)e−
(x−µ)2

2σ2 dx

)
(4)

=

∫ ∞
−∞

g(x)
d

dσ
φµ,σ(x)dx.

The fact that the expression on the RHS of (4) contains the derivative
d
dσφµ,σ(x), imposes the problem of sampling from d

dσφµ,σ(x).
Noting that

d

dσ
log φµ,σ(x) =

d
dσφµ,σ(x)

φµ,σ
(5)

simplifies the expression in (4) to

d

dσ
E[g(X)] =

∫ ∞
−∞

g(x)
( d
dσ

log φµ,σ(x)
)
φµ,σ(x)dx

= E
[
g(X)

(
X2

σ3
− 1

σ

)]
.



44 K. Mirabi and M. Arashi

Then the SF estimator is given by

D(SF )[g(X)] = g(X)

(
X2

σ3
− 1

σ

)
. (6)

For µ = 0, the variance of the SF estimator is given by

V[D(SF )[g(X)]] =
1

σ6
[
E[g2(x)X4]− E2[g(X)X2]

]
− 2

σ4
[
E[g2(X)X2]

−E[g(X)X2]E[g(X)]
]

+
1

σ2
[
E[g2(X)]− E2[g(X)]

]
.

The MV derivative estimator is another distributional approach but instead
considers the derivative of a measure as a finite signed measure. Pflug [12],
introduced this approach for continuous and bounded functions. This tech-
nique was further generalized to L1(P) integrable function by Heidergott
and Vazquez-Abad [9]. Differentiating from φµ,σ(x) w.r.t σ gives

∂

∂σ
φµ,σ(x) = − 1√

2πσ2
e(−

(x−µ)2

2σ2
) +

1√
2πσ

(
(x− µ)2

σ3
e(−

(x−µ)2

2σ2
)

)
=

1

σ
[mµ,σ(x)− φµ,σ(x)], (7)

where the p.d.f mµ,σ(.) is defined as the Double-Maxwell distribution with
parameters (µ, σ2), i.e. X+ ∼ DM(µ, σ) with density function

mµ,σ(x) =
1√

2πσ3
(x− µ)2e−

(x−µ)2

2σ2 .

It follows from (7) that

d

dσ
E[g(X)] =

1

σ

(∫ ∞
−∞

g(x)mµ,σ(x)dx−
∫ ∞
−∞

g(x)φµ,σ(x)dx

)
=

1

σ
(E[g(X+)]− E[g(X)]),

which is satisfied whenever supσ∈U E[|g(X+)|] <∞. Thus the MV deriva-
tive estimator is defined as

D(MVD)[g(X)] =
1

σ
(g(X+)− g(X)). (8)

The transformation X+ = µ+σZ+ holds for the Double-Maxwell distribu-
tion where Z+ ∼ DM(0, 1). The variance of the MVD estimator, assuming
X and X+ are independent is given as

Var(D(MVD)) =
1

σ2
[
E[g2(X+)]− E2[g(X+)] + E[g2(X)]− E2[g(X)]

]
. (9)
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2.2 New estimator

In this part, a new derivative estimator will be introduced using a rele-
vant combination of both SF and MV derivative estimators construction
methodologies. Let X ∼ N (µ, σ2), by definition

∂

∂σ
E[g(X)] =

∂

∂σ

∫
g(x)

1√
2πσ

e
−(x−µ)2

2σ2 dx

=

∫
g(x)

∂

∂σ

(
1√
2πσ

e
−(x−µ)2

2σ2

)
dx

=

∫
g(x)

(
∂

∂σ
σ2 × 1√

2πσ
e

−(x−µ)2

2σ2 × 1

σ2

)
dx.

Note that

∂

∂σ

(
σ2 × 1√

2πσ
e

−(x−µ)2

2σ2 × 1

σ2

)
= 2σ

1√
2πσ

e
−(x−µ)2

2σ2 × 1

σ2
+ σ2

∂

∂σ

(
1√

2πσ3
e

−(x−µ)2

2σ2

)
= 2σ

1√
2πσ3

e
−(x−µ)2

2σ2 + σ2
(
−3

σ
+

(x− µ)2

σ3

)
1√

2πσ3
e

−(x−µ)2

2σ2

=

(
−σ

(x− µ)2
+

1

σ

)
(x− µ)2√

2πσ3
e

−(x−µ)2

2σ2

=

(
−σ

(x− µ)2
+

1

σ

)
mµ,σ, (10)

where ∂
∂σ

1√
2πσ3 e

−(x−µ)2

2σ2 is calculated as

∂

∂σ

(
1√

2πσ3
e

−(x−µ)2

2σ2

)
=

∂

∂σ
ln

(
1√

2πσ3
e

−(x−µ)2

2σ2

)
× 1√

2πσ3
e

−(x−µ)2
2σ

=
∂

∂σ

(
−3 lnσ − (x− µ)2

2σ2

)
1√

2πσ3
e

−(x−µ)2

2σ2

=

(
−3

σ
+

(x− µ)2

σ3

)
1√

2πσ3
e

−(x−µ)2

2σ2 . (11)

Then we define the mixed two-staged (MTS) derivative estimator as

D(MTS)[g(X)] = g(X+)
1

σ

[
1− 1

Z+2

]
. (12)

Consider that in deriving (12), we proceeded in the same fashion as in
MV method, however expression (11) was followed according to the SF.
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In conclusion we mixed the two methods to get a new construction proce-
dure. Assuming µ = 0, after some algebra, the variance of MTS derivative
estimator is given by

Var(D(MTS)) =
1

σ2
E
(

(1− 1

Z+2 )2g2(σZ+2
)

)
− E

(
(1− 1

Z+2 )g(σZ+2
)

)
.

3 Comparison study

From the general expressions obtained in the previous section for the sensi-
tivity estimators, we now compare their performance using the derived vari-
ances for polynomial costs. The variances of the various proposed derivative
estimators are provided for odd and even p in Tables 1 & 2 respectively.

Table 1: Variance of the estimators for add p.

Estimator Variance

IPA σ2p−2p2(2p− 1)!!
SF σ2p−2[(2p+ 1)2 + 1](2p− 1)!!

MVD σ2p−2(2p+ 2)(2p− 1)!!
MTS σ2p−2(2p− 3)!!(4p2 − 4p+ 2)

Table 2: Variance of the estimators for even p.

Estimator Variance

IPA σ2p−2[p2(2p− 1)!!− p2[(p− 1)!!]2]
SF σ2p−2[[(2p+ 1)2 + 1](2p− 1)!!− P 2[(P − 1)!!]2]

MVD σ2p−2[[(2p+ 2)(2p− 1)!!− [(P + 1)2 + 1][(P − 1)!!]2]
MTS σ2P−2((2P − 3)!!(4P 2 − 4P + 2)− (P − 1)!!2P 2)

To illustrate the behavior of of different estimators numerically, Table
3 gives their exact variances based on σ for p from 1 to 6.

The precise ordering statement between the exhibited estimators, is
provided in the following result.

Proposition 1. Let X ∼ N (0, σ2). For the cost function g(x) = xp, with
p ∈ N, the following inequalities hold:

V ar(DIPA) < V ar(DSM ) < V ar(DMVD) < V ar(DSF ), p = 0, 1,
V ar(DMTS) ≤ V ar(DMVD) ≤ V ar(DIPA) ≤ V ar(DSF ), p ≥ 2.
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Proof. Let p be odd. For p > 1 we have

σ2−2p[V ar(DMVD)− V ar(DSM )] = (2p− 3)!!(6p− 4) ≥ 0.

Thus V ar(DMTS) ≤ V ar(DMVD). The proof of the rest is similar and
therefore omitted.

Table 3: Variance of the estimators for simple cost function.

MTS MVD SF IPA p

2 4 10 1 1
6σ2 8σ2 74σ2 8σ2 2
78σ4 120σ4 750σ4 135σ4 3
606σ6 816σ6 8466σ6 1536σ6 4
8610σ8 14940σ8 151890σ8 31125σ8 5

143790σ10 180480σ10 2320050σ10 484920σ10 6

From Proposition 1, it can be immediately deduced that the new esti-
mator, namely mixed two-stage derivative estimator performs better than
the other three types, for the polynomial cost function whenever p ≥ 2.

4 Multivariate case

Consider the Gaussian system, whose elements are driven by the variables
(X1, . . . , Xn) under the law Xi ∼ N (0, σ2). We are interested in estimating
the sensitivity d

dσE[g(X1, . . . , Xn)]. Using the product rule, similar to the
proposal of Heidergott et al. [10], the IPA estimator is defined by

D(IPA) =

n∑
i=1

Zi
∂

∂xi
g(σZ1, . . . , σZn). (13)

For the SF estimator, assuming the integrability condition

E
[
|g(X)| sup

σ̂∈U

∣∣ n∑
k=1

d

dσ
log φ0,σ(Xk)

∣∣] <∞, (14)

we have that

D(SF ) = g(X)

n∑
k=1

(X2
k

σ3
− 1

σ

)
. (15)
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Figure 1: Diagram of the stochastic activity network (SAN).

To obtain the MV derivative estimator, Let X+
n , n = 1, . . . , n be iid with

double-sided Maxwell density. For each k = 1, . . . , n, define

X+
n (k) =

{
Xn n 6= k,

X+
k n = k,

then the multidimensional phantom MV estimator is as follows

D(WD) =
1

σ

n∑
k=1

[g(X+
1 (k), . . . , g(X+

n (k))− g(X1, . . . , Xn)]. (16)

Finally, the mulltidimensional MTS derivative estimator is defined as fol-
lows

D(MTS) =
1

σ

n∑
k=1

[
g(X+

1 (k), . . . , X+
n (k))

(
1− 1

Z+2

)]
. (17)

4.1 Application to stochastic activity networks

A simple example, which is inspired by Fu [3] and also nicely used by Hei-
dergott et al. [10], is depicted in Figure 1. The stochastic activity network
under consideration is consisting of seven arcs T = (T1 . . . , T7) connected
to four nodes X = (X(0), . . . , X(4)). T represents the completion time for
each activity. The solid arcs, Tj , are iid N (ti, σ

2). The dashed arc, T7, is
deterministic with value t7 > 0. Similar to Heidergott et al. [10] we are
interested in the sensitivities of the first two moments of completion times
E[τ ] and E[τ2] with respect to σ. For each path, the completion time is
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additive, so that τ(π) =
∑

n∈π Tn, where the paths are labeled by

π1 = (1, 4, 6), π2 = (1, 3, 5, 6), π3 = (2, 5, 6), π4 = (7).

Specifically, the completion time is given by

τ = max(max(T1 + T4, T1 + T3 + T5, T2 + T5) + T6, T7). (18)

Then we have

D(IPA)(τ) = Z6 +


Z1 + Z4, π∗ = π1,

Z1 + Z3 + Z5, π∗ = π2,

Z2 + Z5, π∗ = π3,

0, π∗ = π4,

D(IPA)(τ2) = 2τD(IPA)(τ).

The score function estimator is given by

D(SF )(τ) = τ

6∑
i=1

(
X2
i

σ3
− 1

σ
) = τ

6∑
i=1

Z2
i − 1

σ
,

D(SF )(τ2) = τ2
6∑
i=1

(
X2
i

σ3
− 1

σ
).

Also we have

D(MV )(τ) = 1
σ

∑6
i=1

(
max

(
max(T

(k)
1 + T

(k)
4 , T

(k)
1 + T

(k)
3 + T

(k)
5 ) + T

(k)
6 ,

T7
)
−max

(
max(T+

1 + T+
4 , T

+
1 + T+

3 + T+
5 , T

+
2 + T+

5 ) + T+
6 ,

T7
))
,

D(MV )(τ2) = 1
σ

∑6
i=1

([
max

(
max(T

(k)
1 + T

(k)
4 , T

(k)
1 + T

(k)
3 + T

(k)
5 ) + T

(k)
6 ,

T7
)]2
−
[

max
(

max(T+
1 + T+

4 , T
+
1 + T+

3 + T+
5 , T

+
2 + T+

5 )

+T+
6 , T7

)]2)
.

Moreover, the MTS estimator has the form

D(MTS)(τ) = 1
σ

∑6
i=1 max

(
max(T

(k)
1 + T

(k)
4 , T

(k)
1 + T

(k)
3 + T

(k)
5 )

+T
(k)
6 , T7

)(
1− 1

Z2
i

)
,
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D(MTS)(τ2) = 1
σ

∑6
i=1

[
max

(
max(T

(k)
1 + T

(k)
4 , T

(k)
1 + T

(k)
3 + T

(k)
5 )

+T
(k)
6 , T7

)]2(
1− 1

Z2
i

)
.

We performedN = 105 independent simulations with σ = 1, and (t1, . . . , t6)

= (6, 8, 5, 8, 4, 7) to calculate the estimates for E dτ
dσ andEdτ2

dσ . The ob-

tained results are summarized in Tables 4-6. In these tables, E(dτ j1/dσ) =

D(M)(τ j1 ), j = 1, 2 for M = IPA,SF,WD,MTS. In all cases (different T7
values) the variance of SF is considerably larger than the variance of the
other three estimators. As T7 gets larger the variances are increased. Al-
though overall, the WD estimation method presents the advantages over
others, but the new estimator is better than two others and in general eas-
ier to compute. Note that the WD estimation method needs simulating
from double-sided Maxwell random variables. Finally, as it is evident from
Table 3, as σ gets larger the new estimator is preferred among others.

Table 4: Results for T7 = 21.

Estimator D(M)(τ1) Var
(
D(M)(τ1)

)
D(M)(τ21 ) V ar

dτ21
dσ

IPA 1.0072028e+ 000 1.7688103e+ 000 4.9084149e+ 001 4.4482945e+ 003
SF 1.3247921e+ 000 6.3264932e+ 003 5.6897842e+ 001 3.4168694e+ 006
WD 1.0042531e+ 000 2.1301063e+ 000 4.8918532e+ 001 4.8284316e+ 003
MTS 3.8228814e+ 0001 .1996669e+ 005 3.8306191e+ 000 1.1997262e+ 005

E(τ1) = 22.55 V ar(τ1) = 2.19 p = 0.2359

Table 5: Results for T7 = 23.

Estimator D(M)(τ1) Var
(
D(M)(τ1)

)
D(M)(τ21 ) Var

(
D(M)(τ21 )

)
IPA 8.4654301e− 001 1.7444848e+ 000 4.1768305e+ 001 4.4746775e+ 003
SF 1.1637515e+ 000 6.7803099e+ 003 4.9565389e+ 001 3.8635188e+ 006
WD 8.4212505e− 001 1.5042224e+ 000 4.1529196e+ 001 3.7018445e+ 003
MTS 3.7736040e+ 000 1.3039099e+ 005 3.7820487e+ 000 1.3039806e+ 005

E(τ1) = 23.43 V ar(τ1) = 0.72 p = 0.6555

Table 6: Results for T7 = 25.

Estimator D(M)(τ1) Var
(
D(M)(τ1)

)
D(M)(τ21 ) Var

(
D(M)(τ21 )

)
IPA 2.8802098e− 001 1.1015529e+ 000 1.4983166e+ 001 3.0284490e+ 003
SF 6.1557906e− 001 7.6545519e+ 003 2.3286288e+ 001 4.8775811e+ 006
WD 2.8378617e− 001 5.7967241e− 001 1.4759672e+ 001 1.5904695e+ 003
MTS 3.4100394e+ 000 1.5117733e+ 005 3.4200166e+ 000 1.5118722e+ 005

E(τ1) = 25.06 V ar(τ1) = 0.09 p = 0.9271
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5 Conclusion

In this paper, we briefly reviewed construction methodologies behind three
estimators measuring system sensitivity w.r.t scale parameter. A new
estimator, namely mixed two-stage derivative estimator constructed and
demonstrated that performs better than the other three types, for the poly-
nomial cost function whenever p ≥ 2. Extension to multivariate case also
considered.

Acknowledgements

The authors are grateful to anonymous referee for her/his valuable com-
ments which have improved the quality of the paper.

References

[1] P. Boyle, Options: Monte Carlo Approach, J. Financial Econ. 4 (1977) 323–
338.

[2] X.-R. Cao, Realization probabilities: The dynamics of queuing systems,
Springer-Verlag, Boston, Massachusetts, 1994.

[3] M. Fu, Sensitivity analysis for stochastic activity networks, ACSE 05 Confer-
ence, 19–21 December, Cairo, Egypt, 2005.

[4] M.C. Fu and J.Q. Hu, Conditional Monte Carlo: Gradient estimation and
optimization applications, Kluwer Academic, Boston, 1997.

[5] P. Glasserman, Gradient Estimation Via Perturbation Analysis, Kluwer Aca-
demic, Boston, 1991.

[6] P. Glasserman, Monte Carlo methods in financial engineering, Springer, New
York, 2004.

[7] P.W. Glynn, Likelihood ratio gradient estimation: An overview, Proc. Winter
Sim. Conf. IEEE Piscataway NJ, 1987.

[8] B. Heidergott and F. Vazquez-Abad, Measure-valued differentiation for
stochastic processes: the finite horizon case, EURANDOM, 2000.

[9] B. Heidergott and F.J. Vazquez-Abad, Measure valued differentiation for
markov chains, J. Optim. Appl. 136 (2008) 187–209.

[10] B. Heidergott, F.J. Vazquez-Abad and W. Volk-Makarewicz, Sensitivity esti-
mation for Gaussian systems, Eur. J. Oper. Res. 187 (2008) 193–207.

[11] Y. Ho and X.R. Cao, Perturbation Analysis of Discrete Event Systems, Kluwer
Academic, Boston, 1991.



52 K. Mirabi and M. Arashi

[12] G. Pflug, Optimisation of Stochastic models. Kluwer Academic, Boston, 1996.

[13] M.I. Reiman and A.Weiss, Sensitivity analysis for simulations via likelihood
ratios, Oper. Res. 37 (1989) 830–844.

[14] R.Y. Rubinstein, Sensitivity analysis of computer simulation models via the
score efficient, Oper. Res. 37 (1989) 72–81.

[15] R. Rubinstein and A. Shapiro, Discrete Event Systems: Sensitivity Analysis
and Optimization by the Score Function Method, John Wiley, 1993.

[16] C.M. Stein, Estimation of the mean of a multivariate normal distribution,
Ann. Statist. 9 (1981) 1135–1151.


	1 Introduction
	2 Sensitivity estimators
	2.1 Some existing estimators
	2.2 New estimator

	3 Comparison study
	4 Multivariate case
	4.1 Application to stochastic activity networks

	5 Conclusion

