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Abstract. Considering multiple criteria and objectives simultaneously in a single real-world problem
and the fuzzy nature of this type of problem is of particular importance and application. As a result,
multi-objective interval type-2 fuzzy linear programming problems have received much attention. How-
ever, there are few and a limited number of methods available for solving multi-objective interval type-2
triangular fuzzy linear programming problems with ambiguity-type imprecision (interval type-2 triangu-
lar fuzzy numbers) in almost all of the problem parameters. This research first considers a multi-objective
interval type-2 fuzzy linear programming problem with ambiguity in all coefficients, in which, all prob-
lem coefficients are interval triangular fuzzy numbers. In addition, using the weighted sum method and
the concept of nearest interval approximation, the problem is solved, and an example is provided.

Keywords: Interval type-2 fuzzy set, interval type-2 triangular fuzzy numbers, ambiguity in parameters, multi-
objective linear programming problem.
AMS Subject Classification 2010: 03E72.

1 Introduction

Multi-objective problems are a group of multi-criteria decision-making problems whose solution space is
continuous with an unlimited number of solutions. In fact, we are facing with multi-objective optimiza-
tion problems (linear or non-linear) with more than one objective function. There are three approaches
to solve multi-objective problems: weighting before solving (prior approaches), weighting after solving
(posterior approaches), and interactive approaches. In the prior approach, the decision-maker’s prefer-
ences are obtained before starting to solve the problem in the form of information such as the degree of
importance (weights). There are several approaches in this category, including the weighted sum (WS)
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method, we refer to [27] for more details. Some recent studies in this field can be summarized as fol-
lows: Dong et al. proposed a two-stage method for a fuzzy multi-objective linear program and applied
it to engineering project portfolio selection [6]; Nahar et al. proposed the statistical method to solve the
multi-objective linear programming (MOLP) problem [22]; Hassanpour et al. proposed a method for
solving an intuitionistic fuzzy MOLP problem [9]; Arya et al. proposed an approach for solving fully
fuzzy multi-objective linear fractional optimization problems [3]. The readers can see the details and
methods of solving this type of problems by referring to [5, 17, 24, 28].

Fuzzy sets (FSs) were introduced by Zadeh in 1965, [30]. Afterward, in 1975, Zadeh proposed
type-2 fuzzy sets (T2FSs) as a generalized version of FSs [31–33]. One of the special cases of T2FSs is
interval type-2 fuzzy sets (IT2FSs), which are less complicated and easier to understand than T2FSs [25].
Since IT2FSs include more uncertainties and information than type-1 fuzzy sets (T1FSs), they are more
suitable and efficient for modeling optimization problems.

To solve the interval type-2 fuzzy linear programming (IT2FLP) problem with ambiguity in the
objective function vector (OFV), resources vector (RsV), and technological coefficients (TCs), which
are generally interval type-2 fuzzy numbers (IT2FNs), different methods have been introduced, such as
ranking [10,11,13], sorting [16], and approximation methods [14]. Each method has its own advantages
and drawbacks. Therefore, it is extremely complex to determine the best method. Hence, when dealing
with any problem, the decision-maker must adopt an appropriate method in accordance with the existing
conditions. In fact, choosing methods with more well-defined properties from the available methods is
important. In the ranking methods, each type-1 fuzzy number (T1FN) is approximated by an IT2FN with
a definite number. During this process, important information may be lost. Although the same concerns
and doubts are evident in most defuzzification methods, using a well-defined approximate closed interval
for a FS is more acceptable and logical than replacing it with a definite number. Using the concept of the
nearest interval approximation (NIA) for each T1FN [14,19] is one of the most appropriate and efficient
methods used to solve IT2FLP problems with ambiguity in all coefficients. So far, rarely studies have
been conducted on multi-objective interval type-2 triangular fuzzy linear programming (MOIT2TrFLP)
problems with ambiguity in parameters. Therefore, in this study, we propose a new method for solving
such problems. In this method, at first, by using the WS method, we convert the multi-objective problem
into a single-objective problem. Then we use the concept of NIA to solve this problem.

The research sections are described below: In the second section, the basic definitions and necessary
concepts, such as: the fundamental definitions of type-1 and type-2 FSs, as well as interval type-2 trian-
gular fuzzy numbers (IT2TrFNs), the concept of NIA, the interval linear programming (ILP) problem,
the MOLP problem are reviewed, and the WS method is presented as one of the best practical method to
solve MOLP problems. The third section proposed a new method to solve the problem of multi-objective
fuzzy linear programming (MOFLP) with IT2TrFNs by using the combination of two approaches of the
WS method and concept of NIA. In the fourth section, we provide a numerical examples to demonstrate
the performance of the proposed method. Finally, the conclusion section includes the obtained results
and generalities of the proposed method.

2 Preliminaries

In this section, triangular fuzzy numbers (TrFNs) and their important characteristics and properties are in-
troduced. Then, basic definitions and theorems related to IT2FSs, interval programming (IP), the MOLP
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problem, and a method used to solve these types of problems are introduced. Finally, the definitions and
theorems related to the concept of NIA are presented. To see more definitions and proofs of theorems,
we refer to [14, Page 3].

2.1 The T1FS

Definition 1 ([10, 11, 13]). Let Ã be a T1FS defined on the universal set X. The FS Ã is made up of
the ordered pairs Ã = {(x,µÃ(x))|x ∈ X}, in which µÃ(x) represents the membership degree of ranges
between zero and one, in which zero indicates non-membership, and 1 indicates definite membership in
Ã.

Definition 2 ([10, 11, 13]). The FS Ã, defined on the set of real numbers, is called a fuzzy number if:

(i) The FS Ã is normal, that is, supp(Ã) = 1;

(ii) Ã is convex, that is, for any arbitrary x1 and x2 belonging to the universal set X and for any
λ ∈ [0,1], µÃ(λx1 +λx2)≥ min(µÃ(x1),µÃ(x2)) holds;

(iii) µÃ(x) is a continuous function in all its intervals.

Figure 1: The T1FN and its α-cut.

Definition 3 ([8]). Consider Ã as T1FN (see Figure 1). The core of Ã is a set described as

Core(Ã) = {x ∈ |µÃ(x) = 1}.

.

2.2 The T2FS

Definition 4 ([20, 21, 34]). The ˜̃A is the T2FS and is defined as:

˜̃A =
∫

x∈X

∫
u∈Jx

fx(u)
/
(x,u) =

∫
x∈X

[∫
u∈Jx

fx(u)
/

u
]/

x,
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where x ∈ X, Jx ⊆ [0,1], u ∈ [0,1] and fx(u) ∈ [0,1]. The Jx and fx(u) are primary and secondary
memberships, respectively. Furthermore, ˜̃A is called IT2FS, if x ∈ X and u ∈ Jx ⊆ [0,1]; µ ˜̃A(x,u) = 1.

Definition 5 ([14]). The IT2TrFN, ˜̃A, which is defined on interval [a∨,a∧], is an IT2TrFN, this is noted
as:

˜̃A = (A,A) = ((a∨,a,a∧;h),(a∨,a,a∧;h)),

where a∨ ≤ a∨ ≤ a≤ a∧ ≤ a∧ and a∨ ≤ a≤ a∧. Its MFs, respectively are

µ ˜̃A(x) =


h x−a∨

a−a∨ , a∨ ≤ x≤ a,
h a∧−x

a∧−a , a≤ x≤ a∧,
0, x≤ a∨,x≥ a∧,

and

µ ˜̃A
(x) =


h x−a∨

a−a∨ a∨ ≤ x≤ a,

h a∧−x
a∧−a a≤ x≤ a∧,

0 x≤ a∨,x≥ a∧.

Figure 2 shows a complete view of an IT2TrFN of ˜̃A with a ∈ R, its FOU, ˜̃A-kernel, and Ae. Also,
we have a = ā.

Figure 2: IT2TrFN, ˜̃A.

2.3 The NIA

In the following, we express the definitions and theorems related to the concept of NIA.

Definition 6 ([8, 12]). Assume Ã is a T1FN and [A(α),A(α)] is its α-cut. The closed interval

C(Ã) = [C,C] is the NIA to A, where C =
1∫
0

A(α)dα , C =
1∫
0

A(α)dα .
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Theorem 1 ([12, 14]). The NIA for the T1FN Ã = (a∨,a,a∧) is as follows:

C(Ã) = [
a∨+a

2
,
a∧+a

2
].

2.4 The ILP

Definition 7 ([1]). An interval number appears as [x,x] in which the x≤ x condition is satisfied. If x = x,
x will be destroyed.

The basic form of the ILP problem is defined as follows [18, 35]:

max z =
n
∑
j=1

[c j,c j]x j,

s.t.
n
∑
j=1

[ai j,ai j]x j ≤ [bi,bi], i = 1,2, ...,m,

x j ≥ 0, j = 1,2, ...,n,

(1)

where c j, c j, ai j, ai j, bi and bi are real numbers. The characteristic model of problem (1) is as follows:

max z =
n
∑
j=1

c jx j,

s.t.
n
∑
j=1

ai jx j ≤ bi, i = 1,2, ...,m,

x j ≥ 0, j = 1,2, ...,n,

where c j ∈ [c j,c j], ai j ∈ [ai j,ai j] and bi ∈ [bi,bi]. Several methods have been proposed to solve the IP
problem [2, 4, 7, 29, 36]. One of the basic methods to solve this type of problem is the best worst cases
(BWC) method [26]. This method divides model (1) into two best and worst sub-models.

Theorem 2 ([18]). Consider
n
∑
j=1

[
ai j,ai j

]
x j ≤

[
bi,bi

]
, for i = 1,2, ...,m. The largest feasible region is

n
∑
j=1

ai jx j ≤ bi and the smallest feasible region is
n
∑
j=1

ai jx j ≤ bi.

The following theorem obtains the worst and best values of the objective function.

Theorem 3 ([15, 18]). The best value of the objective function of the ILP problem (1) is acquired by

max z =
n
∑
j=1

c jx j,

s.t.
n
∑
j=1

ai jx j ≤ bi, i = 1,2, ...,m,

x j ≥ 0, j = 1,2, ...,n,

and the worst values of the objective function of the ILP problem (1) is acquired by

max z =
n
∑
j=1

c jx j,

s.t.
n
∑
j=1

ai jx j ≤ bi, i = 1,2, ...,m,

x j ≥ 0, j = 1,2, ...,n,
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The following details are the important definitions of the MOLP problem and its pareto optimal
solution (POS).

2.5 The MOLP

An optimization problem with multiple linear objective functions that is simultaneously subject to linear
constraints is known as the MOLP problem [23]. The basic form of the MOLP problem is as follows:

max {c1x = z1(x)},
max {c2x = z2(x)},

...
max {ckx = zk(x)},
s.t. Ax≤ b,

x≥ 0,

(2)

where k represents the number of OFVs, A is a matrix of m×n, b ∈ Rm for l = 1, ...,k, cl = (cl1, ...,cln),
and x = (x1, ...,xn)

T .

Definition 8 ([23]). The x∗ is called a POS if and only if there is no other solution like x ∈ X (X is the
reference set) such that for every i, zi(x)< zi(x∗) and for at least one j, z j(x) 6= z j(x∗).

Definition 9 ([23]). The x∗ be a feasible solution for the problem (2):

It is efficient, if there is no x ∈ X such that Cx�Cx∗.

It is poorly efficient, if there is no x ∈ X such that Cx�Cx∗.

It is perfectly optimal, if for x ∈ X, and i = 1, ..., p, cix∗ ≥ cix.

There are three approaches to solve multi-objective problems: weighting before solving (prior ap-
proaches), weighting after solving (posterior approaches), and interactive approaches. In the prior ap-
proach, the decision-maker’s preferences are obtained before starting to solve the problem in the form of
information such as the degree of importance (weights). There are several approaches in this category,
including the WS method. It is used to describe POSs in the MOLP problem, which is explained in detail
below. For more details on other methods, refer to [23, 27].

2.6 The WS method

In this method, a weight (λl, l = 1,2, ...,k) is assigned to each OFV of the problem (2). Then, the
WS method considers all OFs of the MOLP problem. As a result, the MOLP problem (2) turns into a
weighted single objective LP problem (3):

max
k
∑

l=1
λlzl(x),

s.t. Ax≤ b,
x≥ 0,

(3)

where λl, l = 1, ...,k, are scalars, and for λl > 0,
k
∑

l=1
λl = 1.

Note: The coefficients λl should be chosen such that none of the objectives are excluded.
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Theorem 4 ([23]). If x ∈ S is the optimal solution (OS) of the WS method of LP problem (3) (for each
λ ∈ Λ), then, x is a POS of the MOLP problem in (2).

According to Theorem 4, it is deduced that for any strictly positive weight vector, the WS linear
programming problem has optimal solution.

Theorem 5 ([23]). If x ∈ S is a POS of MOLP problem (2), then for λ ∈ Λ, x is the OS of the WS method
of LP problem (3).

In addition, Theorem 5 states that each OS is associated with at least one strictly positive weight
vector, which means that there is an OS in a WS programming problem.

3 A novel approach for solving the MOFLP problems with IT2TrFNs

In this section, a new approach is proposed to solve MOIT2TrFLP problems with ambiguity in coeffi-
cients by combining the WS and NIA methods. Consider a MOFLP problem, all parameters of which are
IT2TrFNs. Using the WS method, this problem is transformed into a single-objective IT2FLP problem
(problem (5)). By replacing the core of these IT2TrFNs, a LP problem called the middle problem is
introduced. Then, the problem (5) is rewritten as a characteristic type-1 FLP problem, all parameters of
which are type-1 TrFNs. Therefore, using the concept of the NIA for each of these characteristic type-1
TrFNs, an approximate closed interval is obtained, the problem (5) is modeled as an IP problem, and
finally, it is solved by applying the BWC method twice. The details of the newly proposed method are
as follows:

First step: (Using the WS method) The general form of the MOIT2TrFLP problem is expressed as
follows:

max { ˜̃c1x = z1},
max { ˜̃c2x = z2},

...
max { ˜̃ckx = zk},
s.t. ∑

j=1
˜̃ai jx j ≤ ˜̃bi, i = 1, ...,m,

x j ≥ 0, j = 1, ...,n,

(4)

where ˜̃c j, ˜̃ai j, and ˜̃bi (for i = 1,2, ...,m, j = 1,2, ...,n and k = 1,2, ...l) are IT2TrFNs with ambiguity-type
imprecision. Using the WS method, the problem (4) becomes a single-objective nonlinear programming
problem as follows:

max ˜̃z =
n
∑
j=1

k
∑

l=1
λl ˜̃cl jx j,

s.t. ∑
j=1

˜̃ai jx j ≤ ˜̃bi, i = 1, ...,m,

x j ≥ 0, j = 1, ...,n.

(5)

The problem (5) is a single-objective nonlinear programming problem. At the end of this step, the
decision-maker can consider arbitrary values for each weight (λl, l = 1,2, ...,k, that λ1+λ2+ ...+λl = 1).
As a result, nonlinear programming problem (5) becomes the LP problem, and the second step can be
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performed on the basis of it.

Second step: (Using the concept of NIA) Now, given that the cores of IT2TrFNs are singleton sets, the
middle problem is introduced as follows:

max z =
n
∑
j=1

k
∑

l=1
λlcl jx j,

s.t. ∑
j=1

ai jx j ≤ bi, i = 1, ...,m,

x j ≥ 0, j = 1, ...,n,

(6)

where (for i= 1, ...,m and j = 1, ...,n), cl j, ai j and bi are the middle numbers in a IT2TrFNs. The problem
(6) is the middle problem. By solving it, we give the middle OSs and optimal value, namely x jm and zm,
respectively. By representing IT2TrFNs as an infinite union of characteristic type-1 TrFNs, the problem
(5) can be expressed as follows:

max ze =
n
∑
j=1

k
∑

l=1
λlce

l jx j,

s.t. ∑
j=1

ae
i jx j ≤ be

i , i = 1, ...,m,

x j ≥ 0, j = 1, ...,n,

(7)

where ce
l j ∈ FOU(c̃l j), ae

i j ∈ FOU(ãi j) and be
i ∈ FOU(b̃i) are all characteristic type-1 TrFNs. Then,

using the concept of the NIA for characteristic type-1 TrFNs, the IP problem equivalent to the problem
(7) will be as follows:

max ze =
n
∑
j=1

k
∑

l=1
λl[c∨e

l j ,c
∧e
l j ]x j,

s.t. ∑
j=1

[a∨e
i j ,a

∧e
i j ]x j ≤ [b∨e

i ,b∧e
i ], i = 1, ...,m,

x j ≥ 0, j = 1, ...,n,

(8)

where c∨e
l j ∈ [c∨e

l j ,c
∨e
l j ], c∧e

l j ∈ [c∧e
l j ,c

∧e
l j ], a∨e

i j ∈ [a∨e
i j ,a

∨e
i j ], a∧e

i j ∈ [a∧e
i j ,a

∧e
i j ], b∨e

i ∈ [b∨e
i ,b

∨e
i ] and b∧e

i ∈
[b∧e

i ,b
∧e
i ]. The problem (8) is the IP problem. Using the BWC method, the IP problem (8) is trans-

formed into two best (9) and worst (10) sub-models, which are presented as follows, respectively:

max z∧e
b =

n
∑
j=1

k
∑

l=1
λlc∧e

l j x j,

s.t. ∑
j=1

a∨e
i j x j ≤ b∧e

i , i = 1, ...,m,

x j ≥ 0, j = 1, ...,n,

(9)

and

max z∨e
w =

n
∑
j=1

k
∑

l=1
λlc∨e

l j x j,

s.t. ∑
j=1

a∧e
i j x j ≤ b∨e

i , i = 1, ...,m,

x j ≥ 0, j = 1, ...,n.

(10)
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As stated above, both sub-models (9) and (10) are IP problems. Therefore, the BWC method is used
again, and two other sub-models are obtained for each of the two sub-models (9) and (10). In fact,
we obtain the four sub-models (best-best (B-B), best-worst (B-W), worst-best (W-B), and worst-worst
(W-W)), which are:

1. B-B model:

max z∧bb =
n
∑
j=1

k
∑

l=1
λlc∧l jx j,

s.t. ∑
j=1

a∨i jx j ≤ b
∧
i , i = 1, ...,m,

x j ≥ 0, j = 1, ...,n.

(11)

The optimal values of the problem are obtained as (11) x∧jbb and z∧bb.

2. B-W model:

max z∧bw =
n
∑
j=1

k
∑

l=1
λlc∧l jx j,

s.t. ∑
j=1

a∨i jx j ≤ b∧i , i = 1, ...,m,

x j ≥ 0, j = 1, ...,n.

(12)

By solving problem (12), the optimal values are obtained as x∧jbw and z∧bw.

3. W-B model:

max z∨wb =
n
∑
j=1

k
∑

l=1
λlc∨l jx j,

s.t. ∑
j=1

a∧i jx j ≤ b
∨
i , i = 1, ...,m,

x j ≥ 0, j = 1, ...,n.

(13)

The optimal values of the problem (13) are given as x∨jwb and z∨wb.

4. W-W model:

max z∨ww =
n
∑
j=1

k
∑

l=1
λlc∨l jx j,

s.t. ∑
j=1

a∧i jx j ≤ b∨i , i = 1, ...,m,

x j ≥ 0, j = 1, ...,n.

(14)

By solving problem (11), the optimal values x∨jww and z∨ww are obtained.

As mentioned, considering the values of the weights (λl), all the above problems become linear. Addi-
tionally, using the OSs obtained from the middle problem (6) and sub-models (11), (12), (13), and (14),
the OSs and optimal value of the problem (5) are obtained in the form of IT2TrFNs as follows:

˜̃x∗opt =
(
(x∨jww,x jm,x∧jbw),(x

∨
jwb,x jm,x∧jbb)

)
,

˜̃z∗opt =
(
(z∨ww,zm,z∧bw),(z

∨
wb,zm,z∧bb)

)
.



186 H.M. Nehi, S. Sargolzaei

3.1 The proposed method for a bi-objective IT2FLP problem

To better understand the audience about the process of proposed method, we consider the bi-objective
IT2FLP problem with ambiguity in parameters:

max { ˜̃c1x = z1},
max { ˜̃c2x = z2},
s.t. ˜̃a11x1 + ˜̃a12x2 ≤ ˜̃b1,

˜̃a21x1 + ˜̃a22x2 ≤ ˜̃b2,
x1,x2 ≥ 0.

(15)

In problem (15), we know ˜̃c1 = ( ˜̃c11, ˜̃c12) and ˜̃c2 = ( ˜̃c21, ˜̃c22). For ˜̃c1 and ˜̃c2, we consider a weight as λ1
and λ2 , respectively. As a result, for the objective function row we have

λ1 ˜̃c1xT +λ2 ˜̃c2xT = λ1( ˜̃c11, ˜̃c12)

(
x1
x2

)
+λ2( ˜̃c21, ˜̃c22)

(
x1
x2

)
= λ1 ˜̃c11x1 +λ1 ˜̃c12x2 +λ2 ˜̃c21x1 +λ2 ˜̃c22x2

= (λ1 ˜̃c11 +λ2 ˜̃c21)x1 +(λ1 ˜̃c12 +λ2 ˜̃c22)x2.

(16)

Therefore, by setting the (16) in the problem (15), we get

max (λ1 ˜̃c11 +λ2 ˜̃c21)x1 +(λ1 ˜̃c12 +λ2 ˜̃c22)x2,

s.t. ˜̃a11x1 + ˜̃a12x2 ≤ ˜̃b1,
˜̃a21x1 + ˜̃a22x2 ≤ ˜̃b2,
x1,x2 ≥ 0.

(17)

The problem (17) is the single-objective nonlinear programming problem in which all parameters are
IT2TrFNs. All IT2TrFNs in problem (17) are treated as characteristic T1FNs. Using NIA, the problem
(17) is transformed into the following IP problem:

max ze = (λ1

[
c∨11 + c11

2
,
c∧11 + c11

2

]
+λ2

[
c∨21 + c21

2
,
c∧21 + c21

2

]
)x1

+(λ1

[
c∨12 + c12

2
,
c∧12 + c12

2

]
+λ2

[
c∨22 + c22

2
,
c∧22 + c22

2

]
)x2,

s.t.
[

a∨11 +a11

2
,
a∧11 +a11

2

]
x1 +

[
a∨12 +a12

2
,
a∧12 +a12

2

]
x2 ≤

[
b∨1 +b1

2
,
b∧1 +b1

2

]
,[

a∨21 +a21

2
,
a∧21 +a21

2

]
x1 +

[
a∨22 +a22

2
,
a∧22 +a22

2

]
x2 ≤

[
b∨2 +b2

2
,
b∧2 +b2

2

]
,

x1,x2 ≥ 0,

(18)
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where in (18), c∨l j ∈ [c∨l j,c
∨
l j], c∧l j ∈ [c∧l j,c

∧
l j], a∨i j ∈ [a∨i j,a

∨
i j], a∧i j ∈ [a∧i j,a

∧
i j], b∨i ∈ [b∨i ,b

∨
i ] and b∧i ∈ [b∧i ,b

∧
i ].

According to the theorems of the IP problem, the best sub-model is expressed as follows:

max z∧b =

(
λ1(

c∧11 + c11

2
)+λ2(

c∧21 + c21

2
)

)
x1 +

(
λ1(

c∧12 + c12

2
)+λ2(

c∧22 + c22

2
)

)
x2,

s.t. (
a∨11 +a11

2
)x1 +(

a∨12 +a12

2
)x2 ≤ (

b∧1 +b1

2
),

(
a∨21 +a21

2
)x1 +(

a∨22 +a22

2
)x2 ≤ (

b∧2 +b2

2
),

x1,x2 ≥ 0,

(19)

where c∧l j ∈ [c∧l j,c
∧
l j], a∨i j ∈ [a∨i j,a

∨
i j] and b∧i ∈ [b∧i ,b

∧
i ], and the worst sub-model is also expressed as:

max z∨w =

(
λ1(

c∨11 + c11

2
)+λ2(

c∨21 + c21

2
)

)
x1 +

(
λ1(

c∨12 + c12

2
)+λ2(

c∨22 + c22

2
)

)
x2,

s.t. (
a∧11 +a11

2
)x1 +(

a∧12 +a12

2
)x2 ≤

b∨1 +b1

2
,

(
a∧21 +a21

2
)x1 +(

a∧22 +a22

2
)x2 ≤

b∨2 +b2

2
,

x1,x2 ≥ 0,

(20)

where c∨l j ∈ [c∨l j,c
∨
l j], a∧i j ∈ [a∧i j,a

∧
i j] and b∨i ∈ [b∨i ,b

∨
i ]. Since, the best (19) and worst (20) sub-models are

IP problems, the following four sub-models are obtained:

1. B-B model:

max z∧bb =

(
λ1(

c∧11 + c11

2
)+λ2(

c∧21 + c21

2
)

)
x1 +

(
λ1(

c∧12 + c12

2
)+λ2(

c∧22 + c22

2
)

)
x2,

s.t. (
a∨11 +a11

2
)x1 +(

a∨12 +a12

2
)x2 ≤ (

b
∧
1 +b1

2
),

(
a∨21 +a21

2
)x1 +(

a∨22 +a22

2
)x2 ≤ (

b
∧
2 +b2

2
),

x1,x2 ≥ 0.

(21)

2. B-W model:

max z∧bw =

(
λ1(

c∧11 + c11

2
)+λ2(

c∧21 + c21

2
)

)
x1 +

(
λ1(

c∧12 + c12

2
)+λ2(

c∧22 + c22

2
)

)
x2

s.t. (
a∨11 +a11

2
)x1 +(

a∨12 +a12

2
)x2 ≤ (

b∧1 +b1

2
),

(
a∨21 +a21

2
)x1 +(

a∨22 +a22

2
)x2 ≤ (

b∧2 +b2

2
),

x1,x2 ≥ 0.

(22)
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3. W-B model:

max z∨wb =

(
λ1(

c∨11 + c11

2
)+λ2(

c∨21 + c21

2
)

)
x1 +

(
λ1(

c∨12 + c12

2
)+λ2(

c∨22 + c22

2
)

)
x2,

s.t. (
a∧11 +a11

2
)x1 +(

a∧12 +a12

2
)x2 ≤ (

b∨1 +b1

2
),

(
a∧21 +a21

2
)x1 +(

a∧22 +a22

2
)x2 ≤ (

b∨2 +b2

2
),

x1,x2 ≥ 0.

(23)

4. W-W model:

max z∨ww =

(
λ1(

c∨11 + c11

2
)+λ2(

c∨21 + c21

2
)

)
x1 +

(
λ1(

c∨12 + c12

2
)+λ2(

c∨22 + c22

2
)

)
x2,

s.t. (
a∧11 +a11

2
)x1 +(

a∧12 +a12

2
)x2 ≤ (

b
∨
1 +b1

2
),

(
a∧21 +a21

2
)x1 +(

a∧22 +a22

2
)x2 ≤ (

b
∨
2 +b2

2
),

x1,x2 ≥ 0.

(24)

In the next section, we describe the process of solving the bi-objective FLP problem with IT2TrFNs by
solving two examples. We explain the advantages and functions of the proposed method, and all the
solution steps are presented in details.

4 Numerical examples

In this section, two numerical examples of MOIT2TrFLP problem are investigated.

Example 1. Consider the following interval bi-objective FLP problem with IT2TrFNs:

max { ˜̃c1x = z1},
max { ˜̃c2x = z2},

s.t. ˜̃a11x1 + ˜̃a12x2 ≤ ˜̃b1,

˜̃a21x1 + ˜̃a22x2 ≤ ˜̃b2,

x1,x2 ≥ 0.

(25)

Parameters which are used in the Example 1 are given in the following Tables 1, 2 and 3.
Using the WS method, the problem (25) is transformed into the following single-objective FLP

problem with IT2TrFNs:

max (λ1 ˜̃c11 +λ2 ˜̃c21)x1 +(λ1 ˜̃c12 +λ2 ˜̃c22)x2,

s.t. ˜̃a11x1 + ˜̃a12x2 ≤ ˜̃b1,

˜̃a21x1 + ˜̃a22x2 ≤ ˜̃b2,

x1,x2 ≥ 0.

(26)
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Table 1: Values of the OFVs.
˜̃c11 ((c∨11,c11,c∧11),(c

∨
11,c11,c∧11)) = ((0.5,1.2,3),(0.2,1.2,3.2))

˜̃c12 ((c∨12,c12,c∧12),(c
∨
12,c12,c∧12)) = ((1,3,4.5),(0.5,3,5))

˜̃c21 ((c∨21,c21,c∧21),(c
∨
21,c21,c∧21)) = ((1,2,3),(0.8,2,3))

˜̃c22 ((c∨22,c22,c∧22),(c
∨
22,c22,c∧22)) = ((1.5,4,5),(1,4,5.5))

Table 2: Values of the TCs.
˜̃a11 ((a∨11,a11,a∧11),(a

∨
11,a11,a∧11)) = ((0.5,1,1.5),(0,1,2))

˜̃a12 ((a∨12,a12,a∧12),(a
∨
12,a12,a∧12)) = ((3,4,5),(2,4,6))

˜̃a21 ((a∨21,a21,a∧21),(a
∨
21,a21,a∧21)) = ((3,4,5),(2,4,6))

˜̃a22 ((a∨22,a22,a∧22),(a
∨
22,a22,a∧22)) = ((1.5,2.5,3.5),(0.5,2.5,4.5))

Problem (26) is nonlinear. Considering λ1 = λ2 = 0.5, this problem becomes an LP problem. Given that
the cores of IT2TrFNs used in problem (25) are singleton sets (see Fig. 2), by placing the cores of these
numbers, the following middle LP problem is obtained:

max zm = 2.1x1 +3x2,

s.t. x1 +4x2 ≤ 11,

4x1 +2.5x2 ≤ 12,

x1,x2 ≥ 0.

(27)

By solving the middle problem (27), the OSs x1m = 1.519, x2m = 2.370, and optimal value zm = 10.3 are
obtained. Using the data from Example 1, the problem (21) is rewritten as follows:

max z∧bb = 2.35x1 +4.375x2,

s.t. 0.5x1 +3x2 ≤ 13,

3x1 +1.5x2 ≤ 16,

x1,x2 ≥ 0.

(28)

The OSs and optimal value of the problem (28) are obtained as x∧1bb = 3.455, x∧2bb = 3.758, and
z∧bb = 24.370. The problem (22) is rewritten as:

max z∧bw = 2.3x1 +4.125x2

s.t. 0.75x1 +3.5x2 ≤ 12,

3.5x1 +2x2 ≤ 14,

x1,x2 ≥ 0.

(29)

By solving the problem (29), the OSs and optimal value x∧1bw = 2.326, x∧2opt = 2.930, and z∧opt = 17.436
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Table 3: Values of the RVs.
˜̃b1

(
(b∨1 ,b1,b∧11),(b

∨
11,b11,b

∧
1 )
)
= ((9,11,13),(7,11,15))

˜̃b2

(
(b∨2 ,b2,b∧2 ),(b

∨
2 ,b2,b

∧
2 )
)
= ((8,12,16),(4,12,20))

are obtained. The problem (23) is rewritten in the following problem:

max z∨wb = 1.175x1 +2.375x2,

s.t. 1.25x1 +4.5x2 ≤ 10,

4.5x1 +3x2 ≤ 10,

x1,x2 ≥ 0.

(30)

The OSs and optimal value of the problem (30) are given as x∨1wb = 0.910, x∨2wb = 1.970, and z∨wb = 5.746.
The problem (24) is rewritten as:

max z∨ww = 1.05x1 +2.125x2,

s.t. 1.5x1 +5x2 ≤ 9,

5x1 +3.5x2 ≤ 8,

x1,x2 ≥ 0.

(31)

By solving the problem (31), the OSs and optimal value x∨1ww = 0.430, x∨2ww = 1.671, and z∨ww = 4.003 are
obtained. Therefore, the OSs and optimal value are calculated up to three decimal places and presented
as the following IT2TrFNs:

˜̃x1opt = ((0.910,1.519,2.326),(0.430,1.519,3.455)),
˜̃x2opt = ((1.970,2.370,2.930),(1.671,2.370,3.758)),
˜̃zopt = ((5.746,10.300,17.436),(4.003,10.3,24.370)),

As mentioned, the optimal solutions and the optimal value of the objective function are IT2TrFNs. In
fact, with this solution method, the numbers retain their fuzzy nature. See the OSs in Figure 3, and the
optimal value in Figure 4.

As you can see, the OSs and optimal value are in the form of IT2TrFNs.

Example 2. Consider the three-objective FLP problem with the IT2TrFNs:

max { ˜̃c1x = z1},
max { ˜̃c2x = z2},
max { ˜̃c3x = z3},

s.t. ˜̃a11x1 + ˜̃a12x2 ≤ ˜̃b1,

˜̃a21x1 + ˜̃a22x2 ≤ ˜̃b2,

x1,x2 ≥ 0.

(32)
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Figure 3: The OSs of Example 1.

Figure 4: The optimal value of Example 1.

Table 4: Values of the OFVs.

˜̃c11 ((c∨11,c11,c
∧
11),(c

∨
11,c11,c∧11)) = ((1.5,2,2.5),(1,2,3))

˜̃c12 ((c∨12,c12,c
∧
12),(c

∨
12,c12,c∧12)) = ((2.5,3,3.5),(2,3,4))

˜̃c21 ((c∨21,c21,c
∧
21),(c

∨
21,c21,c∧21)) = ((1,1.5,2),(0,1.5,3))

˜̃c22 ((c∨22,c22,c
∧
22),(c

∨
22,c22,c∧22)) = ((2,3,4),(1,3,5))

˜̃c31 ((c∨31,c31,c
∧
31),(c

∨
31,c31,c∧31)) = ((2,2.5,3),(1.5,2.5,3))

˜̃c32 ((c∨32,c32,c
∧
32),(c

∨
32,c32,c∧32)) = ((2.5,4,4.5),(2,4,5))

Table 5: Values of the TCs.
˜̃a11 ((a∨11,a11,a

∧
11),(a

∨
11,a11,a∧11)) = ((0.5,1,1.5),(0,1,2))

˜̃a12 ((a∨12,a12,a
∧
12),(a

∨
12,a12,a∧12)) = ((3,4,5),(2,4,6))

˜̃a21 ((a∨21,a21,a
∧
21),(a

∨
21,a21,a∧21)) = ((3,4,5),(2,4,6))

˜̃a22 ((a∨22,a22,a
∧
22),(a

∨
22,a22,a∧22)) = ((1.5,2.5,3.5),(0.5,2.5,4.5))
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Table 6: Values of the RVs.
˜̃b1

(
(b∨1 ,b1,b

∧
11),(b

∨
11,b11,b

∧
1 )
)
= ((9,11,13),(7,11,15))

˜̃b2

(
(b∨2 ,b2,b

∧
2 ),(b

∨
2 ,b2,b

∧
2 )
)
= ((8,12,16),(4,12,20))

Parameters which are used in the problem (32) are given in the Tables 4, 5 and 6.
Using the WS method, the problem (32) is transformed into the following problem:

max (λ1 ˜̃c11 +λ2 ˜̃c21 +λ3 ˜̃c31)x1 +(λ1 ˜̃c12 +λ2 ˜̃c22 +λ3 ˜̃c32)x2,

s.t. ˜̃a11x1 + ˜̃a12x2 ≤ ˜̃b1,

˜̃a21x1 + ˜̃a22x2 ≤ ˜̃b2,

x1,x2 ≥ 0.

(33)

The problem (33) is a single-objective nonlinear programming problem. Now, we consider λ1 = 0.4,λ2 =
0.3 and λ3 = 0.3, note that λ1 +λ2 +λ3 = 1. The middle LP problem is as follows:

max zm = 1.75x1 +3x2,

s.t. x1 +4x2 ≤ 11,

4x1 +2.5x2 ≤ 12,

x1,x2 ≥ 0.

(34)

By solving the problem (34), the OSs, x1m = 1.518, x2m = 2.370, and optimal value, zm = 9.768 are
obtained. Problem (21) is rewritten as follows:

max z∧bb = 2.375x1 +3.75x2,

s.t. 0.9x1 +3x2 ≤ 13,

3x1 +1.5x2 ≤ 16,

x1,x2 ≥ 0.

(35)

The OSs and optimal value of the problem (35) are obtained as x∧1bb = 3.454, x∧2bb = 3.758, and z∧bb =
22.296. Then, the problem (22) is rewritten as:

max z∧bw = 2x1 +3.375x2,

s.t. 0.75x1 +3.5x2 ≤ 12,

3.5x1 +2x2 ≤ 14,

x1,x2 ≥ 0.

(36)

By solving the problem (36), the OSs and optimal value are obtained as x∧1bw = 2.326, x∧2bw = 2.930, and
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Figure 5: The OSs of Example 2.

Figure 6: The optimal value of Example 2.

z∧bw = 14.541. And, the problem (23) is rewritten in the following problem:

max z∨wb = 1.5x1 +2.625x2,

s.t. 1.25x1 +4.5x2 ≤ 10

4.5x1 +3x2 ≤ 10,

x1,x2 ≥ 0.

(37)

The OSs and optimal value of the problem (37) are given as x∨1wb = 0.909, x∨2wb = 1.970, and z∨wb = 6.534.
The problem (24) is rewritten as:

max z∨ww = 1.125x1 +2.25x2,

s.t. 1.5x1 +5x2 ≤ 9

5x1 +3.5x2 ≤ 8,

x1,x2 ≥ 0.

(38)

By solving the problem (38), the OSs and optimal value are given as x∨1ww = 0.431, x∨2ww = 1.671, and
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z∨ww = 4.244. Therefore, the OSs and optimal value are presented as the following IT2TrFNs:

˜̃x1opt = ((0.909,1.518,3.326),(0.431,1.518,3.454)),
˜̃x2opt = ((1.970,2.370,2.930),(1.671,2.370,3.758)),
˜̃zopt = ((6.534,9.768,14.541),(4.224,9.768,22.296)),

Figures 5 and 6 show the OSs and the optimal value of Example 2, respectively.

As you can see, the OSs and optimal value are in the form of IT2TrFNs, and their fuzzy nature is
preserved.

5 Conclusions

In this study, an MOFLP problem with the coefficients of IT2TrFNs with ambiguity-type impreci-
sion was investigated. First, using the WS method, the MOLP problem was transformed into a single-
objective programming problem. In addition, the concept of NIA for type-1 TrFN was used to solve
this new problem. Every IT2TrFN is created by the infinite union of type-1 TrFNs. Therefore, using
the concept of the NIA, an interval is assigned to each IT2TrFN in the problem, and the single-objective
LP problem with IT2TrFNs is transformed into two IP problems where all coefficients are of the in-
terval type. Then, using the BWC method, each of the above two problems is transformed into two
LP sub-models. Therefore, four sub-models are obtained, and by solving them, the optimal value and
OSs are obtained in the form of IT2TrFNs. We used this method to solve two multi-objective problems
(bi-objective and three-objective). One of the important reasons for conducting this study is the lack
of sufficient study on MOLP problems using parameters such as INT2TrFNs. The advantages of the
proposed method can be summarized as follows:

A combination of two simple and practical methods: the weighted sum method and the nearest
interval approximation approach, to solve the multi-objective problem.

Using the weighted sum method to convert a multi-objective problem into a single-objective prob-
lem, the decision-maker can allocate a proportional weight vector to each objective function based
on the conditions of the real problem. Consequently, the obtained results are much more desirable;

The approximation used to convert a triangular fuzzy number into an interval is easily computable;

Applying the decision-makers opinion before starting the problem-solving process.

The obtained optimal solutions are in the form of IT2TrFNs. In fact, the fuzzy nature of the
numbers is preserved.

Computational simplicity and desirable results;

Since the obtained results for OSs and optimal objective function values are IT2TrFNs, the ob-
tained results have less error.
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Since no specific study has been conducted on this type of problem (MOFLP problems) with such
parameters (IT2TrFNs), this study can be considered as one of the first related studies.

For future studies, the proposed method can be used for multi-objective problems with some IT2FNs,
such as IT2 trapezoidal FNs and interval-typed TrFNs.
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