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Abstract. The use of preconditioning techniques has been shown to offer significant advantages in solv-
ing multi-linear systems involving nonsingular M -tensors. In this paper, we introduce a new precondi-
tioner that employs (I +P)-like preconditioning techniques, and give the proof of its convergence. We
also present numerical examples and comparison results that demonstrate the superior efficiency of our
preconditioner compared to both the original SOR method and the previously proposed preconditioned
SOR method.
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1 Introduction

Tensor equations found numerous applications in engineering and scientific computing [1–4]. These
applications span various fields, ranging from evolutionary game dynamics [5, 6] and partial differential
equations to data mining [7–12] and image processing [2, 13, 14].

Suppose that A ∈ R[m,n] is an n-dimension real tensor of m-order and b is a vector in Rn. Consider
the following tensor equation

A xm−1 = b. (1)

The tensor-vector product is a vector where the entries are defined by

(A xm−1)i =
n

∑
i2,i3,...,im=1

aii2i3···imxi2xi3 . . .xim , i = 1,2, . . . ,n,

where xi denotes the ith component of x.

∗Corresponding author
Received: 23 August 2023 / Revised: 01 Dcember 2023 / Accepted: 03 Dcember 2023
DOI: 10.22124/jmm.2023.25368.2253

c© 2024 University of Guilan http://jmm.guilan.ac.ir

http://jmm.guilan.ac.ir


132 A. Hasanpour, M. Mojarrab

Various algorithms have been developed for solving the multi-linear system represented by equation
(1). It has been proven that if A is a nonsingular M -tensor and b is a positive vector, then equation
(1) has a unique positive solution [15]. In [3], certain conditions were established for the existence
and uniqueness of the solution to (1). In the case where A is a strong M -tensor, continuous-time
neural networks were proposed in [16] to obtain the unique positive solution of (1). Iterative methods
have also been applied to solve multi-linear systems. In [4], the authors presented a new tensor-based
method for solving symmetric M -tensor systems. In [15], Newton’s method, the Jacobi method, and the
Gauss-Seidel method were proposed as methods for solving (1). Han introduced the homotopy method
for solving (1) for M -tensors [17]. In [18], He presented a Newton-type method for solving tensor
equations. Liu et al. introduced variant tensor splittings by considering A = E −F and extended it for
strong M -tensors [3], such that

xk = (M(E )−1F xm−1
k−1 +M(E )−1b)[

1
m−1 ], k = 1,2, . . . ,

where the iterative tensor of the splitting method is M(E )−1F and M(E ) is the majorization matrix of
tensor E .

It is recalled that if M(A ) denotes the majorization matrix of A ∈ R[m,n], then it is an n×n matrix
whose entries are given by M(A )i j = ai j... j for i, j = 1, . . . ,n [26–28]. If M(A ) is nonsingular, then A
is said to be a left-invertible tensor or a left-nonsingular tensor. In this case, we can express A as the
product of M(A ) and the identity tensor Im as follows: A = M(A )Im. The order 2 left-inverse of A
is denoted as M(A )−1, and it satisfies the property that M(A )−1A = Im [29].

The Jacobi, Gauss-Seidel, and SOR iterative methods will be obtained by taking A = D −L −F ,
E = D , E = D −L , and E = 1

ω
(D −ωL ) respectively, where D = DIm, L = LIm, such that D is

the positive diagonal matrix and L is the strictly lower triangle nonnegative matrix [3].
Preconditioning techniques play a crucial role in solving linear and multi-linear systems, as they can

significantly enhance the convergence rate of the method by employing a suitable preconditioner. While
numerous efficient preconditioners have been proposed for solving linear systems, relatively few studies
have focused on preconditioned methods for solving multi-linear systems. In [19], Li et al. proposed a
preconditioned tensor splitting method for solving the following preconditioned multi-linear systems

PA xm−1 = Pb,

where P is the preconditioner and the iterative scheme is as follows:

xk = (M(EP)
−1FPxm−1

k−1 +M(EP)
−1Pb)[

1
m−1 ], k = 1,2, . . . ,

so that PA = EP−FP is a tensor splitting of PA .
A modified preconditioned Gauss-Seidel method was proposed in [21]. Another approach was pre-

sented in [22], where a new preconditioner was constructed using the components of the first column of
the majorization matrix of A . Liu et al. introduced a preconditioned SOR method for solving multi-
linear systems with M -tensors [23]. In [24], the authors proposed preconditioners for multi-linear sys-
tems based on the majorization matrix.

The objective of this paper is to present an extension of the (I + P)-type preconditioner for the
SOR method to solve multi-linear systems. We apply the newly proposed preconditioned SOR method
to several numerical examples and compare its performance against the original SOR method. The
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results of the numerical experiments and comparisons demonstrate the effectiveness of the proposed
preconditioner.

This paper is structured as follows. Section 2 presents some preliminary information, including re-
lated definitions and lemmas. In Section 3, we introduce a new preconditioner for the SOR method.
Section 4 contains several numerical examples that demonstrate the effectiveness of the proposed pre-
conditioned iterative method. The final section is the concluding remark.

2 Preliminaries

A real tensor A ∈ R[m,n] is a multidimensional array consists of nm real entries:

(ai1i2i3···im) ∈ R, i j = 1, . . . ,n, j = 1, . . . ,m.

We denote the set of all n-dimension real tensors of m-order by R[m,n]. By putting m = 2, R[2,n] shows
all n×n real matrices, and when m = 1, R[1,n] is as Rn.

Definition 1 ([30, 31]). The ai···i, i = 1, . . . ,n is a diagonal entry of A ∈ R[m,n]. In addition, the identity
tensor is defined as Im = (δi1i2···im) ∈ R[m,n] where

δi1i2···im =

{
1, i f i1 = i2 = · · ·= im,

0, otherwise.

Definition 2 ([23]). For A ∈ R[m,n], a pair (λ ,x) ∈ C× (Cn \{0}) is called an eigenvalue-eigenvector
of A if we have

A xm−1 = λx[m−1], (2)

where x[m−1] = (xm−1
1 , . . . ,xm−1

n )T . Also,

ρ(A ) = max{| λ | |λ ∈ σ(A )}

is the spectral radius of A , where σ(A ) is the set of all eigenvalues of A .

Definition 3 ([32, 33]). The A ∈ R[m,n] is a Z -tensor when its off-diagonal entries are non-positive. If
there exists a nonnegative tensor B and a positive real number ξ ≥ ρ(B) satisfied in A = ξIm−B,
then A is an M -tensor. If ξ > ρ(B), then A is called a strong M -tensor.

Definition 4 ([3]). Consider A , E , F ∈ R[m,n], and O denotes the null tensor. Then
(i) A = E −F is a splitting of A if E is a left-nonsingular.
(ii)A = E −F is a regular splitting of A if E is left-nonsingular with M(E )−1 ≥O , and F ≥ O .
(iii) A = E −F is a weak regular splitting of A if E is left non-singular with M(E )−1 ≥O , and

M(E )−1F ≥ O .
(iv) A = E −F is a convergent splitting if ρ(M(E )−1F )< 1.

Definition 5 ([25]). The tensor C = AB ∈ R[m,n] is the product of A ∈ R[2,n] and B ∈ R[m,n] that is
defined as follows

c ji2···im =
n

∑
j2=1

a j j2b j2i2···im , j, ir = 1,2, . . . ,n, (r = 2, . . . ,m). (3)
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It can be written as

C1 = (AB)1 = AB1,

where the matrices C1 and B1 are obtained from flattening C and B along with the first index. Let
B ∈ R[3,n], then

B1 =


b111 . . . b1n1 b112 . . . b1n2 . . . b11n . . . b1nn

b211 . . . b2n1 b212 . . . b2n2 . . . b21n . . . b2nn
...

. . .
...

...
. . .

...
...

...
. . .

...
bn11 . . . bnn1 bn12 . . . bnn2 . . . bn1n . . . bnnn

 .

Lemma 1 ([19]). If A is a Z -tensor, then we have the following equivalent conditions
(i) A is a strong M -tensor.
(ii) There exists some x≥ 0, such that A xm−1 > 0, where x ∈ Rn.
(iii) A has a convergent (weak) regular splitting.
(iv) All (weak) regular splittings of A are convergent.

Lemma 2 ([3]). If A is a strong M -tensor, then M(A ) is a nonsingular M-matrix.

Lemma 3 ([19]). Let A ∈ R[m,n] be a strong M -tensor. For any weak regular splitting A = E −F of
A , if (ρ,x) is perron eigenpair of T = M(E )−1F , then A xm−1 ≥ 0.

Lemma 4 ([19]). Suppose that A is a strong M -tensor and A = E1−F1 = E2−F2 are two weak
regular splittings with M(E2)

−1 ≥M(E1)
−1. If the Perron vector x of M(E2)

−1F2 satisfies A xm−1 ≥ 0,
then ρ(M(E2)

−1F2)< ρ(M(E1)
−1F1).

Lemma 5 ([15]). Assume A is a strong M -tensor. Then the multi-linear system (1) has a unique positive
solution for every positive vector b.

3 The preconditioner structure

Li et al. [12] proposed a preconditioner of the form P = I +S, with

S =


0 −α1a12...2 0 . . . 0
0 0 −α2a23...3 . . . 0
...

...
...

. . .
...

0 0 0 . . . −αn−1a(n−1)n...n
0 0 0 . . . 0

 ,

where ai j... j, i, j = 1, . . . ,n are the components of A in (1), and αi ∈ [0,1], i = 1, . . . ,n− 1. Using this
preconditioner and [20], we propose a preconditioner as follows

Ps = (I +Ks) = (I +S)[(I−S)+(L+U)(I +S)],

where L and U are the positive strictly lower and strictly upper triangular parts of M(A ) = D−L−U ,
respectively.
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Without loss of generality, we take all the diagonal entries of the tensor A in (1) equal to 1. Applying
a nonsingular matrix Ps as a preconditioner, we get a new preconditioned multi-linear system

ˆA xm−1 = b̂,

where ˆA = PsA and b̂ = Psb. Consider ˆA = D̂ − L̂ − F̂ , with D̂ = D̂Im, L̂ = L̂Im, where D̂,−L̂
are the positive diagonal matrix and the strictly lower triangular matrix of M( ˆA ), respectively. We take
the preconditioned SOR method as

xk = (Tpxm−1
k−1 +qp)

[ 1
m−1 ], k = 1,2, . . . ,

where

Tp = M(Êp)
−1F̂ ,

Ep =
1
ω
(D̂−ωL̂ ),

Fp =
1
ω
((1−ω)D̂ +ωF̂ ),

qp = M(Ê )−1b̂.

Theorem 1. Let A be a Z -tensor. Then Ps = (I +Ks) is nonnegative for αi ∈ [0,1], i = 1,2, . . . ,n−1.
Moreover, (I +Ks)≥ (I +S).

Proof. We have

Ps = (I +Ks) = (I +S)[(I−S)+(L+U)(I +S)]

= (I +S)[I−S+L+U +US+LS]

= (I +S)︸ ︷︷ ︸
≥0

[I +L︸︷︷︸
≥0

+(U−S)︸ ︷︷ ︸
≥0

+(U +L)S︸ ︷︷ ︸
≥0

]≥ 0.

Furthermore,

Ps = (I +Ks) = (I +S)︸ ︷︷ ︸
≥0

+(I +S)[L+(U−S)+(U +L)S︸ ︷︷ ︸
≥0

].

Thus, (I +Ks)≥ (I +S).

Theorem 2. Let A ∈ R[m,n] be a strong M -tensor. Then for the new preconditioner Ps, ˆA = PsA is a
strong M -tensor.

Proof. At first, we show that under the certain conditions, the preconditioned tensor is a Z -tensor. We
take A = Im−L −F , where L = LIm, and −L is the strictly lower triangular matrix corresponding
to M(A ). Let A be a Z -tensor and consider ˜A = (I +S)A . We have

˜A = (I +S)A

= Im−L −F +SIm−SL −SF

= (Im−D1)− (L +L1)− (F −SIm +F1 +SF )

= D̃− L̃ − F̃ ,
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where D1 = D1Im, L1 = L1Im, F1 = F1Im such that D1,L1 are the diagonal matrix and the strictly
lower triangular matrix corresponding to M(SL ), respectively, and SL = D1 +L1 +F1. Furthermore,
D̃ and L̃ are diagonal and strictly lower triangular parts of tensor ˜A .

For ˆA = (I +Ks)A , and considering SL = D1 +L1 +F1, we have

ˆA = (I +Ks)A

= (I +S)A +(I +S)[L(I +S)+U(I +S)−S]A

= [I +(I +S)L+(I +S)U−S](I +S)A

= [I +L+SL+(I +S)U−S](D̃− L̃ − F̃ )

= [(I +D1)+(L+L1)+((I +S)U−S+F1)](D̃− L̃ − F̃ )

= D̂− L̂ − F̂ ,

where D̂ and L̂ are diagonal and strictly lower triangular parts of tensor ˆA , and

D̂ = (I +D1)D̃−D2−D3

= Im−D1D1−D2−D3,

L̂ = D1︸︷︷︸
≥O

L̃

︸ ︷︷ ︸
≥O

+(L+L1)︸ ︷︷ ︸
≥O

L̃

︸ ︷︷ ︸
≥O

+L2 +L3,

F̂ = (I +D1)F̃ − ((I +S)U−S+F1)D̃ +((I +S)U−S+F1)F̃ +F2 +F3

= F̃ +D1F̃ − ((I +S)U−S+F1)(Im−D1)︸ ︷︷ ︸
≥O

+((I +S)U−S+F1)F̃ +F2 +F3,

assuming that

(L+L1)F̃ = D2 +L2 +F2,

((I +S)U−S+F1)L̃ = D3 +L3 +F3,

where D2 = D2Im, L2 = L2Im such that D2, L2 are the diagonal matrix and the strictly lower triangular
matrix corresponding to M((L+L1)F̃ ), respectively. In addition, D3 = D3Im, L3 = L3Im such that
D3,L3 are the diagonal matrix and the strictly lower triangular matrix corresponding to M(((I + S)U −
S+F1)L̃ ), respectively. It can be seen that L̂ ,F̂ ≥O . Thus, ˆA is a M -tensor.

We take

E = (Im−L ),

ˆ̂E = (I +Ks)E ,

ˆ̂F = (I +Ks)F .

This can be easily confirmed that ˆA = ˆ̂E − ˆ̂F , and ˆ̂F ≥ O . According to

M( ˆ̂E )−1 ˆ̂F = (I−L)−1(I +Ks)
−1(I +Ks)F = (I−L)−1F ≥O, (4)
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ˆA = ˆ̂E − ˆ̂F is a weak regular splitting. Since A is a strong M -tensor, using (4), we have

ρ(M( ˆ̂E )−1 ˆ̂F ) = ρ((I−L)−1F )< 1.

Therfore, by using Lemma 1, ˆA is a strong M -tensor.

Lemma 6. Suppose A ∈ R[m,n] is a strong M -tensor. If A = E −F is a splitting such that E is a
Z -tensor and F is nonnegative, then the splitting is a convergent regular splitting.

Proof. Since A is a strong M -tensor, there exist x̂ > 0 such that A x̂m−1 > 0. As A = E −F and F
is nonnegative, we have E ≥ A . Thus E x̂m−1 ≥ A x̂m−1 > 0. Since E is a Z -tensor and E x̂m−1 > 0,
according to Lemma 1 E is a strong M -tensor. In addition by Lemma 2 M(E ) is a nonsingular M-matrix
and consequently M(E )−1 ≥ 0. Therefore, A = E −F is a convergence regular splitting.

Theorem 3. If ˆA ∈ R[m,n] is a strong M -tensor, then ˆA = Ê − F̂ is a convergence regular splitting.

Proof. Since ˆA is a strong M -tensor, and Im−D1D1−D2−D3 is the diagonal part of ˆA , âi j2 j3··· jm ≤ 0,
(i, j2, j3, . . . , jm) 6= ( j, j, j, . . . , j), i = 1,2, . . . ,n. Thus

Ê = Im−D1D1−D2−D3− (D1L̃ +(L+L1)L̃ L +L2 +L3),

is a Z -tensor. According to Lemma 6 and this fact that F is nonnegative, Ê is a strong M -tensor and
ˆA = Ê − F̂ is a convergence regular splitting.

Theorem 4. The preconditioned multi-linear system (2) for proposed preconditioner Ps with any αi ∈
[0,1], i = 1,2, . . . ,n−1, has the same unique positive solution of (1).

Proof. Using Lemma 5, Theorem 2, and the fact that b̂ > b > 0, it is easy to prove.

Theorem 5. Let A ∈ R[m,n] be a strong M -tensor. For A = E −F , ˆA = Ê − F̂ , T = M(E )−1F ,
Tp = M(Ê )−1F̂ , and ω ∈ (0,1), we can conclude

ρ(Tp)≤ ρ(T )< 1.

Proof. From Theorem 2, we have

E = Im−L ,

Ê = D̂− L̂ = Im−D1D1−D2−D3− (D1L̃ +(L+L1)L̃ L +L2 +L3).

Since ˆA = PsA = Ê − F̂ , Ps is an invertible matrix, so A = P−1
s Ê − P−1

s F̂ is a weak regular
splitting because

M(P−1
s Ê )−1 = M(Ê )−1Ps ≥ 0,

M(P−1
s Ê )−1P−1

s F̂ = M(Ê )−1F̂ ≥O.



138 A. Hasanpour, M. Mojarrab

Let (ρ̂, x̂) be the Perron eigenpair of T̂ as the iterative tensor of A = P−1
s Ê −P−1

s F̂ . By Lemma 3, we
have A x̂m−1 ≥ 0. Furthermore

D̂ = Im−D1D1−D2−D3 ≤Im,

L̂ = D1L̃ +(L+L1)L̃ L +L2 +L3

= D1L̃ +LL +L1L +(L+L1)L1 +L2 +L3 ≥L .

Thus D̂− L̂ ≤Im−L and Ê ≤ E .

Since E and Ê are strong M -tensors, we have

M(Ê )≤M(E ).

So

M(Ê )−1 ≥M(E )−1.

We have M(Ê )−1F̂ = M( 1
ω
(D̂−ωL̂ ))−1F̂ . Furthermore

M(P−1
s Ê )−1 = M(Ê )−1Ps ≥M(Ê )−1 ≥M(E )−1,

and

ρ(T̂ ) = ρ(M(P−1
s Ê )−1P−1

s F̂ ) = ρ(M(Ê )−1F̂ ) = ρ(Tp).

Now Lemma 4 leads to ρ(Tp) = ρ(T̂ )≤ ρ(T )< 1.

4 Numerical examples

In this section, numerical examples are given to show the efficiency of the preconditioned SOR method.
The stopping criterion ‖ A xm−1− b ‖2≤ 10−10 is used and a maximum of 1000 iterations is allowed.
In all examples, we take the starting vector x0 equal to ones(n,1). To find the optimal parameter ω , we
search [0.01,2) with a step length of 0.01. In this case, the best SOR performance for each value ω will
determine the optimal ω . We explore the value of α at [0.1,1] with a step length of 0.1. All examples
were executed in double precision in MATLAB R2014a.

We show the number of iterations by “Iter”, the logarithm of ‖A xm−1
k −b ‖2 in base 10 (xk is the kth

approximate solution) by “Error” and the CPU time in seconds by “time” for the new preconditioned
SOR (PsSOR), the SOR method, and the former preconditioned SOR (PSOR) [12], respectively.

The product A xm−1 denoted in (1) can be computed by transforming into the following matrix-vector
product:

A xm−1 = A (x⊗ x⊗ . . .⊗ x)︸ ︷︷ ︸
m−1

,

where ⊗ shows the Kronecker product. Also the matrix-tensor product BA is defined in (3).
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Example 1. Consider A ∈ R[3,n] and b ∈ Rn in which

a111 = annn = 1,

a122 = an(n−1)(n−1) =−0.5,

aiii =
θ 2

h2 +
µ1

h
+η , i = 2,3, . . . ,n−1,

ai(i−1)i = ai(i−1)(i−1) =−
θ 2

4h2 +
µ2

2
2h

, i = 2,3, . . . ,n−1,

ai(i+1)i = ai(i+1)(i+1) =−
θ 2

4h2 +
µ2

2
2h

, i = 2,3, . . . ,n−1,

where
θ = 0.2, µ1 = 0.04, η = 0.04, µ2 =−0.04, h =

2
n
.

From [34], it is found that A is a strong M -tensor. The right hand-side vector b is considered equal
to ones(n,1). Numerical results in Table 1 with different sizes of A represent that the new precondi-
tioned method is better than original ones and former preconditioned SOR methods for solving M -tensor
equation.

Table 1: Numerical results for Example 1 with ωopt = 1.1.
PSSOR SOR PSOR

n iter time iter time iter time
10 40 0.007 54 0.010 39 0.008
20 62 0.010 117 0.016 85 0.013

Fig. 1 shows the performance of the new preconditioned, old preconditioned and the original SOR
methods in reducing residual norm. It can be seen that the PsSOR method converges faster than the
others.

Example 2. Let A ∈ R[3,n] and b ∈ Rn with

a111 = (2+n)/2,

annn = 1,

a1ii =−1/2,

aiii = 2, i = 2,3, . . . ,n−1,

aii(i−1) =−1/2, i = 2,3, . . . ,n−1,

ai(i−1)(i−1) =−1/2, i = 2,3, . . . ,n−1,

ai(i+1)(i+1) =−1/2, i = 2,3, . . . ,n−1,

and 
b1 = c2

0,

bi = a/(n−1)2, i = 2,3, . . . ,n−1,

bn = c2
n,
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Figure 1: Performance of methods in reducing residual norm of methods for Example 1 (n = 20).

Table 2: Numerical results for Example 2 with ωopt = 1.3.
PSSOR SOR PSOR

n iter time iter time iter time
10 23 0.007 35 0.012 26 0.010
50 25 0.017 41 0.034 32 0.020
100 26 0.117 42 0.121 35 0.123
150 26 0.380 42 0.402 37 0.480

where c0 = 1/2, c1 = 1/3, and a = 2. Numerical results in Table 2 with different sizes of A indicate that
PsSOR converges faster than SOR and PSOR for the optimal value of ω .

Furthermore, from Fig. 2, we can observe that PsSOR converges faster than the others.

Example 3. Let B ∈R[3,n] be a nonnegative tensor with M(B) = rand(n,n), where “rand” is a function
in MATLAB that produces an n by n matrix with entries in [0,1] uniformly. The other entries of B are
also considered zero. For i = 2,3, . . . ,n, bii−1i = biii−1 = 1/6, and for i = 2,3, . . . ,n−1, bii+1i = biii+1 =
1/6. Consider A = n2Im− 0.01B. The right-hand side vector b is taken equal to ones(n,1). In this
example, we also compare PSOR with the Newton method in [15]. Numerical results in Table 3 with
different sizes of A represent that PsSOR converges faster than PSOR, SOR, and the Newton method for
the optimal value of ω , especially when n is large.

In addition, the number of iterations required for PsSOR to converge for different values of ω from
0.1 to 2 with a step length of 0.1 is shown in Figure 3. It can be observed that the optimal value of ω is
1.01.
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Figure 2: Performance of methods in reducing residual norm of methods for Example 2 (n = 10).

Table 3: Numerical results of Example 3 with ωopt = 1.01.
PSSOR SOR PSOR Newton

n iter time iter time iter time iter time
5 7 0.006 7 0.009 7 0.006 7 0.006
50 8 0.011 9 0.014 9 0.012 11 0.046
150 9 0.016 9 0.156 9 0.018 12 0.167
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Figure 3: Search to find the optimal parameter ω for Example 3 by taking n = 5.
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5 Conclusions

The purpose of this paper is to introduce a novel tensor splitting SOR preconditioner that can effectively
solve multi-linear systems. To evaluate the performance of the proposed method, we applied both the
standard SOR method and its preconditioned versions by a new preconditioner that we proposed and a
preconditioner that was introduced before, on several numerical examples. Our analysis of the results
indicate that the presented preconditioner leads to a significant reduction in the number of iterations and
CPU time required for convergence compared to the standard SOR method.
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