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Abstract. Due to the importance of the generalized nonlinear Klein-Gordon equation (NL-KGE) in
describing the behavior of light waves and nonlinear optical materials, including phenomena such as
optical switching by manipulating the dispersion and nonlinearity of optical fibers and stable solitons,
we explain the approximation of this model by evaluating different classical and fractional terms in this
paper. To estimate the fundamental function, we use a first-order finite difference approach in the tem-
poral direction and a collocation method based on Gegenbauer polynomials (GP) in the spatial direction
to solve the NL-KGE model. Moreover, the stability and convergence analysis is proved by examining
the order of the new method in the time direction as O(δ t). To demonstrate the efficiency of this design,
we presented numerical examples and made comparisons with other methods in the literature.
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1 Introduction

The nonlinear Klein-Gordon equation (NL-KGE) is a partial differential equation that mathematically
represents and explains the behavior of scalar fields in space and time [25]. This equation considers the
nonlinearity of the field, implying that the field’s behavior is affected by its magnitude. [5, 7]. NL-KGE
has diverse applications in various fields for simulating a wide range of phenomena [14, 24]. The linear
Klein-Gordon equation (L-KGE) can only describe a free scalar field, which implies that the field is
unaffected by external forces or interactions. [12, 16]. This equation is a simplified version of the NL-
KGE and is commonly like a starting point for analyzing scalar fields in physics and other sciences. NL-
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KGE is a more advanced version of L-KGE that accounts for nonlinearity in the scalar field. [23]. It is an
influential tool for modeling various phenomena in physics, engineering, and mathematics and is widely
used in scientific research and engineering applications [2, 23]. The NL-KGE model is a valuable tool
for analyzing the behavior of light waves in nonlinear optical materials, including phenomena in optical
switching, self-focusing, and solitons. Solitons, in particular, can be studied using the equation to develop
new types of optical communication systems [1, 6]. By manipulating the dispersion and nonlinearity of
optical fibers, stable solitons that transmit data at high speeds can be created over long distances. An
example of the NL-KGE model in optical communication involves the behavior of solitons in optical
fibers. [26]. Optical fibers are commonly used in modern communication systems to transmit information
over long distances. The NL-KGE model can be used to describe the behavior of a soliton in an optical
fiber [3, 4, 26]. This equation enables researchers to analyze and design new communication systems
based on the properties of soliton propagation. The NL-KGE model is crucial in studying the behavior
of light waves in nonlinear optical materials and has numerous applications in optic communication and
laser technology. This study aims to obtain a numerical solution for a one-dimensional time-dependent
NL-KGE that can display a nonlinear phenomenon [19]

∂ 2u(x, t)
∂ t2 − ∂ αu(x, t)

∂xα
+au(x, t)+bu3(x, t) = f (x, t), x ∈ (0,1), t ∈ (0,T ], (1)

where ∂ α u(x,t)
∂xα is the classical derivative for α = 2 and Caputo derivative for 1 < α < 2, which is defined

as follows
∂ αu(x, t)

∂xα
= CDα

x u(x, t) =
1

Γ(2−α)

∫
ξ

0

∂ 2u(ξ , t)
∂ 2ξ

(x−ξ )(1−α)dξ .

The following assumptions are considered as initial and boundary conditions when dealing with the given
Eq (1) {

u(x,0) = q1(x),
∂u(x,t)

∂ t

∣∣
t=0 = q2(x), x ∈ (0,1),

u(0, t) = p1(t), u(1, t) = p2(t), t ∈ (0,T ],

in which the function f (x, t) is the source term.
In Eq. (1), the function u(x, t) represents the wave displacement at a specific spatial position x

and time t with the constants a and b having predetermined values. Additionally, the self-interaction
in the system is mathematically described by the nonlinear function f (x, t). A variety of analytical
and numerical methods have been used to solve this equation. In this section, we will briefly describe
some of these studies. In [18], amplitude instability analysis is investigated to solve NL-KGE by the
finite difference method. Earlier than this, spectral methods based on the [15] present the Legendre
orthogonal polynomials. Dehghan in [8] proposed a method to tackle NL-KGE in optoelectronic devices.
Sirendaoreji later introduced a new scheme for NL-KGE using auxiliary equations [6]. A cubic B-spline
collocation method to gain the numerical result of NL-KGE is presented by Rashidinia et. al [20].
Using the Tension spline scheme, they tackled the solution of NL-KGE in paper [21]. Dehghan et al.
utilized radial basis functions and fourth-order compact schemes and solved the NL-KGE. in papers [11]
and [10]. In 2010, a combination of collocation and finite difference scheme was adopted to get a new
numerical method for the NL-KGE model in [17]. Later, the procedure of the dual reciprocity boundary
integral model was applied to solve the NL-KGE model in [9]. All the mentioned methods such as
the implicit finite difference method used only on the mesh points. Moreover, the accuracy of these
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techniques decreases in non-smooth and irregular regions. Therefore, we present a new, unconditionally
stable approach to solving this equation that improves the convergence of the numerical method.

The rest of this paper deals with these sections. Numerical procedures and structure for the time
discretization are present in Section 2. Section 3 provides a detailed explanation of the GP approximation
operators. In Section 4, we discuss the semi-design stability studies of numerical methods. Section 5
compares numerical example results with other studies.

2 Semi-discretization scheme

Let us select grid points t j = jδ t, j = 0,1, . . . ,Nt for the time interval [0,T ], in which δ t = T/Nt is a
uniform time step length. In this case, the domain [0,T ] is covered by Ωδ t , where Ωδ t = {t j|0≤ j≤ Nt}.
Let u j = {u j(x)|0≤ j ≤ Nt} be the discrete function in time on the mesh Ωδ t . To clarify the notation for
any grid function u j(x) ∈ u j, describe it as follows

∂ 2u(x, t j)

∂ t2 =
u j−1(x)−2u j(x)+u j+1(x)

δ t2 +O(δ t2),
∂u(x, t j)

∂ t
=

u j+1(x)−u j−1(x)
2δ t

+O(δ t2), (2)

where u j(x) = u(x, t j) and O(δ t2) indicates the local truncation error of the approximation. Considering
(1) at the point t j+1, we have

u j−1(x)−2u j(x)+u j+1(x)
δ t2 − ∂ αu j+1(x)

∂xα
+au j+1(x)+b(u j+1(x))3 = f j+1(x)+O(δ t2), (3)

where f j+1(x) = f (x, t j+1). Simplifying (3) leads to

(1+aδ t2)u j+1(x)−δ t2 ∂ αu j+1(x)
∂xα

+bδ t2(u j+1(x))3 = δ t2 f j+1(x)−u j−1(x)+2u j(x)+O(δ t4). (4)

As U3 has a continuous first-order derivative, we can represent it in the following way

u3(x, t j+1) = u3(x, t j)+O(δ t).

Then, we can easily rewrite Eq. (4) as below

(1+aδ t2)u j+1(x)−δ t2 ∂ αu j+1(x)
∂xα

= δ t2 f j+1(x)−bδ t2(u j(x))3−u j−1(x)+2u j(x)+O(δ t). (5)

Directly, by inserting j = 0 in (5), one gets

(1+aδ t2)u1(x)−δ t2 ∂ αu1(x)
∂xα

+aδ t2u1(x) = δ t2 f 1(x)−bδ t2(u1(x))3−u−1(x)+2u0(x)+O(δ t), (6)

and applying the following relation using notation (2)

u1(x)−u−1(x)
2δ t

=
∂u(x,0)

∂ t
= q2(x),

one derives that
u−1(x) = u1(x)−2δ t×q2(x).
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By replacing the above relation in Eq. (6), one reaches the following relation for j = 0

(2+aδ t2)u1(x)−δ t2 ∂ αu1(x)
∂xα

= δ t2 f 1(x)−bδ t2(u1(x))3 +2δ t×q2(x)+2u0(x)+O(δ t2). (7)

Let U j(x) be the approximate solution u j(x) in the relations (5) and (7). Then the semi-discrete procedure
is obtained as{

(2+aδ t2)U1(x)−δ t2 ∂ αU1(x)
∂xα = δ t2 f 1(x)−bδ t2(U0(x))3 +2δ t×q2(x)+2U0(x), j = 0,

(1+aδ t2)U j+1(x)−δ t2 ∂ αU j+1(x)
∂xα = δ t2 f j+1(x)−bδ t2(U j(x))3−U j−1(x)+2U j(x), 1≤ j ≤ Nt −1.

(8)

3 Full-discretization scheme

To find the full discretization, we first explain the basis function to approximate the space in Ωx = {xi}Nx
i=0

in the domain [0,1] where Nx is a positive integer. For convenience, we denote u j(xi) = u j
i and f j(xi) =

f j
i . This approximation is defined by the summation of a coefficient ρ

j
i in each temporal step j which is

multiplied by the orthogonal polynomials ϕi(x) as

u j(x) =
Nx

∑
i=0

ρ
j

i+1ϕi+1(x), (9)

where ρ
j

i+1 is the coefficient and ρ
j

i+1 = 〈u j(x),ϕi+1(x)〉. We can use many polynomials as {ϕi+1(x)}Nx
i=0

to do so. In this paper, we use shifted GPs that is the well-known Jacobi polynomials P(α,β )
n (x)|x→2x−1

with α = β = γ− 1
2 ,(γ >−1

2) and is defined as below in the interval [0,1]

ϕi+1(x) =
i

∑
k=0

k

∑
r=0

G i,γ
k,r xr, i = 0,1, . . . ,Nx, (10)

where

G i,γ
k,r =

(−1)k−r(i+2γ−1)!(2γ + i+ k−1)!(γ−0.5)!
r!(i+2γ− i−1)!(i− k)!(2γ + i−1)!(γ + k−0.5)!(k− r)!

.

To obtain the fully discrete scheme, we have to approximate each term of Eq. (8) by the relation (9).
In Eq. (8) there is a Caputo fractional derivative of u j(x), which can be estimated at node xi. Here, we
approximate this term as follows

0Dα
x ϕi+1(x) =

i

∑
k=0

k

∑
r=dαe

Gi,γ
k,rx

r−α , i = dαe,dαe+1, . . . ,Nx, (11)

in which dαe is the ceiling of the fractional term α Gi,γ
k,r =

(r)!
(r−α)! ρ

j
i , and for 0 ≤ i < dαe we get

0Dα
x ϕi+1(x) = 0. As a result, employing the last series in (9), we have

∂ αu j(x)
∂xα

=
Nx

∑
i=0

ρ
j

i+1
∂ αϕi+1(x)

∂xα
=

Nx

∑
i=0

i

∑
k=0

k

∑
r=dαe

ρ
j

i+1Gi,γ
k,rx

r−α = Λ
j
Φ

α , (12)
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where Λ j = [ρ j
1 ,ρ

j
2 , . . . ,ρ

j
i+1], and Φα is a vector that each of its entries is obtained from

i

∑
k=0

k

∑
r=dαe

ρ
j

i+1Gi,γ
k,rx

r−α .

Moreover, we can write Eq. (9) in the matrix form as below

u j(x) =
Nx

∑
i=0

i

∑
k=0

k

∑
r=0

ρ
j

i+1G
i,γ
k,r xr = Λ

j
Φ, (13)

where Φ is a vector that each of its entries is obtained from

i

∑
k=0

k

∑
r=0

ρ
j

i+1G
i,γ
k,r xr.

Now, according to Eqs. (12) and (13), and substituting in Eq. (8), we can immediately obtain the
following nonlinear equations{

Λ1Φ1 = Λ0Φ0 +F1, j = 0,
Λ j+1Φ j+1 = Λ j−1Φ j−1 +Λ jΦ j +F j+1, 1≤ j ≤ Nt −1,

(14)

where

Φ
1 = (2+aδ t2)Φ−δ t2

Φ
α , Φ

0 = 2Φ−bδ t2(Φ)3, F1 = δ t2 f 1(x)+2δ t×q2(x),

Φ
j+1 = (1+aδ t2)Φ−δ t2

Φ
α , Φ

j−1 =−Φ, Φ
j = 2Φ−bδ t2(Φ)3, F j+1 = δ t2 f j+1(x).

We use the collocation manner to solve the nonlinear system of equations (14). For this objective, we
get the roots of the shifted GP, ϕNx−1(x), as the collocation points and substitute them in the system to
obtain nonlinear equations at each time step j. The function ϕNx−1(x) has N−1 roots. So we need two
more conditions to obtain a system with Nx + 1 equations, which can be obtained using the following
boundary conditions for i = 0,1, . . .Nx and k = 1,2, . . . ,Nt

u(0, t j) =
Nx

∑
i=0

ρ
j

i+1ϕi+1(0) = p1(t j), u(1, t j) =
Nx

∑
i=0

ρ
j

i+1ϕi+1(1) = p2(t j).

To start the iteration method, we need the initial condition as

u(x,0) =
Nx

∑
i=0

ρ
0
i+1ϕi+1(x) = q1(x),

in which

ρ
0
i+1 = 〈q1(x),ϕi+1(x)〉=

∫ 1

0

2(k+ γ)k!Γ(γ)2

π21−2γΓ(k+2γ)
× (4x−4x2)γ−0.5q1(x)ϕi+1(x)dx,

where the coefficient multiplied by the above integral is the weight function of the shifted GPs.
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4 Study of the stability

For analyzing the stability of the numerical method (8), let us discuss the homogeneous part of the second
relation, which may be expressed as

(1+aδ t2)U j+1(x)−δ t2 ∂ αU j+1(x)
∂xα

=−bδ t2(U j(x))3−U j−1(x)+2U j(x), 1≤ j ≤ Nt −1. (15)

To exhibit the unconditional stability of the new method, it is necessary to check that the error in each
time step is less than the prior step, i.e.,

‖ε j+1(x)‖ ≤ ‖ε j(x)‖, 1≤ j ≤ Nt −1,

where ε j(x) = U j(x)−u j(x) that U j(x) and u j(x) are the approximate and exact solution, respectively.
Suppose the functional space with the Hilbert space L2(Ω) in Ω and the standard norm ‖u j(x)‖2

2 =
〈u j(x),u j(x)〉 is as following

Hn
Ω(u

j(x)) = {u j(x) ∈ L2(Ω),Dαu j(x) ∈ L2(Ω),∀|α| ≤ n},

where Dα is the fractional derivative. Using (15) and multiplying ε j+1(x) and integrating on Ω, we
obtain the following relation

(1+aδ t2)〈ε j+1(x),ε j+1(x)〉−δ t2〈∂
αε j+1(x)

∂xα
,ε j+1(x)〉

=−bδ t2(〈ε j(x),ε j+1(x)〉)3−〈ε j−1(x),ε j+1(x)〉+2〈ε j(x),ε j+1(x)〉.
(16)

Now we state the following lemmas which are the properties of inner multiplication for fractional func-
tions.

Lemma 1 ([13, 22]). The following relation holds for α ∈ (1,2) and u,v ∈ H2
Ω

in the domain (a,b)

〈aDα
x u(x),v(x)〉= 〈aD

α

2
x u(x), xD

α

2
b v(x)〉,

where aD
α

2
x u(x) and xD

α

2
b v(x) are the left and right Caputo or Riemann-Liouville fractional derivatives,

respectively.

Lemma 2 ([13, 22]). If u(x) ∈ Hn
Ω

, then the following conditions hold for α ≥ 0

〈aDα
x u(x), xDα

b u(x)〉= cos(πα)‖xDα
b u(x)‖2 = cos(πα)‖xDα

b u(x)‖2.

It is clear from Lemmas 1 and 2 that the second term of Eq. (16) is nonnegative. Then, we have

(1+aδ t2)〈ε j+1(x),ε j+1(x)〉 ≤ −bδ t2(〈ε j(x),ε j+1(x)〉)3−〈ε j−1(x),ε j+1(x)〉+2〈ε j(x),ε j+1(x)〉.

According to the nonlinear term, it summarizes to

(1+aδ t2)〈ε j+1(x),ε j+1(x)〉 ≤ −〈ε j−1(x),ε j+1(x)〉+(2−bδ t2)〈ε j(x),ε j+1(x)〉.
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Since 1+aδ t2 ≥ 1 and 〈ε j+1(x),ε j+1(x)〉= ‖ε j+1(x)‖2, we get

‖ε j+1(x)‖2 ≤−〈ε j−1(x),ε j+1(x)〉+2〈ε j(x),ε j+1(x)〉.

So
‖ε j+1(x)‖2 ≤ 〈ε j−1(x),ε j+1(x)〉+2〈ε j(x),ε j+1(x)〉.

On the other hand, employing the Cauchy-Schwarz inequality, we get

‖ε j+1(x)‖ ≤ ‖ε j−1(x)‖+2‖ε j(x)‖,

which is equivalent to
‖ε j+1(x)‖−‖ε j(x)‖ ≤ ‖ε j−1(x)‖+‖ε j(x)‖. (17)

Hence, summing up the relation (17) from j = 1 to j = Nt , we acquire the following relation

Nt

∑
j=1

(‖ε j+1(x)‖−‖ε j(x)‖)≤
Nt

∑
j=1
‖ε j−1(x)‖+

Nt

∑
j=1
‖ε j(x)‖.

Then, we get

‖εNt+1(x)‖−‖ε1(x)‖ ≤
Nt

∑
j=1
‖ε j−1(x)‖+

Nt

∑
j=1
‖ε j(x)‖,

which gives

‖εNt+1(x)‖ ≤ ‖ε1(x)‖+2
Nt−1

∑
j=1
‖ε j−1(x)‖+‖εNt (x)‖.

For different values of Nt , the above relation can be written as follows

for Nt = 1 : ‖ε2(x)‖ ≤ 2‖ε1(x)‖,
for Nt = 2 : ‖ε3(x)‖ ≤ 5‖ε1(x)‖,
for Nt = 3 : ‖ε4(x)‖ ≤ 12‖ε1(x)‖.

With the continuation of the previous relationship, we see that

‖εNt+1(x)‖ ≤C‖ε1(x)‖,

where C is a nonnegative constant. This inequality shows that the numerical method is unconditional
stable in the time direction.

5 Numerical results and implementation

In this section, we apply the new scheme to solve a numerical example (Eq. (1)) to demonstrate its poten-
tial. All examples are programmed on a Dell Inspiron Intel (R) Core i72630QM 2.00GHz using Wolfram
Mathematica 11. In some examples, the exact solution is utilized to estimate the order of convergence so
that the arrangement of the connecting stability of the strategy might be well demonstrated. The fourth
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example is taken from [11] so that we can compare our results with the numerical results of this paper.
To show the error, we use L∞-norm and L2-norm errors as below

E∞ = max
0≤i≤Nx

|uNt
i − ûNt

i |, E2
2 =

Nx

∑
i=0
|uNt

i − ûNt
i |

2
, E2

RMS =
1

Nx +1

Nx

∑
i=0
|uNt

i − ûNt
i |

2
,

where uNt
i and ûNt

i are the exact and approximated solution in the final step of the temporal variable, re-
spectively. Moreover, the observed order of the numerical method about the temporal variable is denoted
as follows

O = log2(
eδ t

e δ t
2

),

where eδ t is defined as the error of the numerical solution with the step size δ t at the final time T .

Example 1. Consider the following nonlinear Klein-Gordon model in 0 < x < 1, 0≤ t ≤ T,

∂ 2u(x, t)
∂ t2 − ∂ 2u(x, t)

∂x2 +au(x, t)+bu3(x, t) = f (x, t),

with the initial and boundary conditions as{
u(x,0) = x(1− x), ∂u(x,t)

∂ t |t=0 =−x(1− x), x ∈ (0,1),
u(0, t) = u(1, t) = 0, t ∈ (0,T ],

and the source term f (x, t) is

f (x, t) = exp(−t)
(
(1+a)x(x−1)+bexp(−2t)x3(x−1)3−2

)
.

The exact solution is given by u(x, t) = exp(−t)x(x− 1). Our principal claim is to make the numerical
convergence rate of the suggested scheme over time. Table 1 illustrates the discrete error and conver-
gence order of t for the new method. In this table, we choose Nx = 5, and Nx = 7. It can be seen that the
numerical results are in the perfect match with the exact solution and the convergence order is approach-
ing the predicted order 1. Figure 1 illustrates the numerical results that converge to the exact solution
and confirms that the approach is numerically convergent.

Table 1: The L2 and L∞ errors of Example 1 with a = b = 1, and Nx = 5, and Nx = 7, at T = 1.

Error and the convergence order Error and the convergence order
by the new method with Nx = 5 by the new method with Nx = 7

Nt E∞ O E2 O E∞ O E2 O
20 1.22533E−3 − 2.74532E−3 − 1.22448E−3 − 2.74524E−3 −
40 6.54549E−4 0.904591 1.46758E−3 0.903541 6.54431E−4 0.903858 1.46756E−3 0.903520
80 3.39070E−4 0.948919 7.60810E−4 0.947827 3.39186E−4 0.948164 7.60808E−4 0.947811

160 1.72658E−4 0.973666 3.87630E−4 0.972856 1.72781E−4 0.973132 3.87632E−4 0.972845
320 8.71313E−5 0.986655 1.95684E−4 0.986156 8.72121E−5 0.986343 1.95685E−4 0.986150
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Figure 1: E∞−error the Example 1 with Nx = 5 and the various temporal size at T = 1.

Example 2. Consider the following nonhomogeneous problem

∂ 2u(x, t)
∂ t2 − ∂ 2u(x, t)

∂x2 +au(x, t)+bu3(x, t) = f (x, t), (x, t) ∈ (0,1)× (0,T ],

with the initial and boundary conditions as{
u(x,0) = cos(x), ∂u(x,t)

∂ t |t=0 =−sin(x), x ∈ (0,1),
u(0, t) = cos(t), u(1, t) = cos(1+ x), t ∈ (0,T ],

and the source term is f (x, t) = cos(x+ t)
(
a+ bcos2(x+ t)

)
. The exact solution is given by u(x, t) =

cos(x + t). Numerical outcomes are demonstrated in Table 2, Figures 2, and 3. From Table 2 it is
obvious that the new strategy corresponds to the first order convergence. It also presents the results
that converge in the spatial direction. This means that each time we decrease the step length in space
and/or time, numerical results converge to the exact solution, confirming that the method is numerically
convergent. Figure 2 shows the approximated solution and its error with NT = 200, Nx = 7 at T = 1.
It is clear from this figure that the suggested numerical procedure has high convergence order and good
accuracy. Moreover, in Figure 3, the absolute error is shown with the various values of the temporal
direction and Nx = 7 at T = 1, where decreasing the step length in the time direction reduces the error in
the numerical results.

Example 3. Consider the NL-KGE model with the fractional term in the spatial derivative direction

∂ 2u(x, t)
∂ t2 −CDα

x u(x, t)+au(x, t)+bu3(x, t) = f (x, t), (18)

with the initial and boundary conditions as{
u(x,0) = x2 +1, ∂u(x,t)

∂ t |t=0 =−x2−1, x ∈ (0,1),
u(0, t) = exp(−t), u(1, t) = 2exp(−t), t ∈ (0,T ],
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Table 2: The L2 and L∞ errors of Example 2 with a = b = 1, and Nx = 5, and Nx = 7, at T = 1.

Error and the convergence order Error and the convergence order
by the new method with Nx = 5 by the new method with Nx = 7

Nt E∞ O E2 O E∞ O E2 O
20 8.04389E−3 − 1.84052E−2 − 8.05236E−3 − 1.83980E−2 −
40 4.21166E−3 0.933505 9.64901E−3 0.931659 4.21290E−3 0.934599 9.64369E−3 0.931890
80 2.15573E−3 0.966215 4.94726E−3 0.963750 2.15420E−3 0.967663 4.94390E−3 0.963935

160 1.09018E−3 0.983604 2.50598E−3 0.981256 1.08872E−3 0.984519 2.50401E−3 0.981409
320 5.47875E−4 0.992651 1.26135E−3 0.990405 5.47146E−4 0.992633 1.26023E−3 0.990557

Figure 2: The approximated solution (left panel) and the L∞−error (right panel) with Nt = 200, Nx = 7
for Example 2.

Figure 3: The absolute error for Example 2 with Nx = 7 at T = 1.

and the source term is

f (x, t) = exp(−t)
(
(1+a)(x2 +1)− 2

Γ(3−α)
x2−α +bexp(−2t)(x2 +1)3).
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Table 3: The L2 and L∞ errors of Example 3 with a = b = 1, and Nx = 5, at T = 1.

Error and the convergence order Error and the convergence order
by the new method with α = 1.8 by the new method with α = 1.5

Nt E∞ O E2 O E∞ O E2 O
20 5.78084E−3 − 4.50402E−2 − 2.49446E−2 − 4.55574E−2 −
40 2.88622E−3 1.0021 2.25322E−2 0.999225 1.24683E−2 1.00046 2.30457E−2 0.98319
80 1.44001E−3 1.0031 1.12714E−2 0.999325 6.22787E−3 1.00146 1.16571E−2 0.98329
160 7.17962E−4 1.0041 5.63793E−3 0.999425 3.10863E−3 1.00246 5.89603E−3 0.98339
320 3.57715E−4 1.0051 2.81989E−3 0.999525 1.55059E−3 1.00346 2.98195E−3 0.98349

The exact solution of Eq. (18) under the above conditions is given by u(x, t) = exp(−t)(x2 + 1). We
solved Example 3 with the new method presented in Section 3 with the various values of α for different
Nx and different step sizes δ t. Numerical results are shown in Table 2 and Figure 4. It is clear from Table
2 that our new method is of the first order of convergence and shows that the numerical strategy has
convergence in the spatial direction. Figure 4 demonstrates that each time we decrease the step length
in the time direction, the numerical results converge to the exact solution that accredits the numerical
convergence of the new procedure.

Figure 4: The absolute error for the Example 3 with Nx = 6, and α = 1.9 at T = 1.

The paper [11] studied a nonhomogeneous problem investigating NL-KGE using thin-plate splines
radial basis functions. In this paper, we compare the results with the new scheme.

Example 4. Consider NL-KGE studied in paper [11] defined by Eq. (1) as

∂ 2u(x, t)
∂ t2 − ∂ 2u(x, t)

∂x2 +u3(x, t) = f (x, t),

with the initial and boundary conditions as{
u(x,0) = 0, ∂u(x,t)

∂ t |t=0 = 0, x ∈ (0,1),
u(0, t) = 0, u(1, t) = t3, t ∈ (0,T ],
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Table 4: Comparing the error of method [11] with the new method for Example 4 with δ t = 0.0001, and Nx = 5,
at T = 1,2,3,4,5.

Errors and the CPU time Errors and the CPU time
of [11] with Nx = 20 of the new method with Nx = 5

T E∞ E2 ERMS Time(s) E∞ E2 ERMS Time(s)
1 1.1012E−5 5.4998E−5 5.4725E−6 6 7.52894E−6 8.48962E−6 7.89025E−6 5.492
2 1.6496E−4 1.1522E−3 1.1465E−4 14 7.59203E−5 9.58702E−5 9.70026E−5 10.725
3 5.9728E−4 3.2588E−3 3.2426E−4 25 4.89350E−5 7.56843E−5 6.79205E−5 14.839
4 1.8264E−3 9.8191E−3 9.7704E−4 37 5.86302E−4 6.87904E−4 1.00720E−4 19.982
5 3.6915E−3 1.9139E−2 1.9044E−3 52 3.92380E−4 6.19430E−3 1.36401E−4 28.079

and the source term is f (x, t) = 6xt(x2− t2)+ x3t3. The exact solution under the above conditions is
given by u(x, t) = x3t3. We solved Example 4 with the new scheme with the fixed value Nx and different
values of T . The numerical results are shown in Table 4. It is clear from Table 4 that our new scheme is
better than the numerical results of [11] . Moreover, it shows that whenever we reduce step size Nx in the
spatial direction, the numerical results are better than those in [11] . Also, the computational time in the
new method is much less compared to the one in [11] .

6 Conclusions

In this paper, we have presented a first-order method to describe solving the Klein-Gordon model using
fractional and classical terms in spatial differentiation, such that we define the fractional terms in the
Caputo sense. We also demonstrated the stability and convergence analysis of the presented scheme by
examining the order of the numerical method in the time direction as O(δ t). To validate the imple-
mentation of our numerical strategy, we have considered four examples. Numerical results presented in
tabular and graphical form demonstrate the high-order and stable performance of the proposed scheme.
Moreover, we theoretically proved the stability of numerical techniques using the energy method. We
observed good performance for nonlinear and fractional terms.
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