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Abstract. The main purpose of this study is to construct a new approach for solving a constrained matrix
game where the payoffs and the constraints are LR-fuzzy numbers. The method that we propose here is
based on chance constraints and on the concept of a comparison of fuzzy numbers. First, we formulate the
fuzzy constraints of each player as chance constraints with respect to the possibility measure. According
to a ranking function R, a crisp constrained matrix game is obtained. Then, we introduce the concept
of R-saddle point equilibrium. Using results on ordering fuzzy numbers, sufficient existence conditions
of this concept are provided. The problem of computing this solution is reduced to a pair of primal-dual
linear programs. To illustrate the proposed method, an example of the market competition game is given.

Keywords: Chance-constraints, constrained matrix games, fuzzy games, linear programming, saddle point equilib-
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1 Introduction

Game theory is a branch of applied mathematics that provides tools for modelling and analyzing different
types of competitive situations. It has several applications in all fields of social sciences, engineering,
biological science, and political sciences. The present literature on game theory applications is very large
(see for example, Refs. [2–4, 17, 34]).

The simplest model in game theory is a two player finite strategic zero-sum game (matrix game). It is
a mathematical representation of a competitive situation which involves two players, in which the players
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have a finite number of alternatives to choose from and one player’s loss is the other’s gain. From the
seminal paper of [45], it is known that any matrix game has at least one saddle point in mixed strategies.
Dantzing [10] showed that a saddle point equilibrium of a matrix game can be obtained from the optimal
solution of a primal-dual pair of linear programs. However, in many matrix games coming from real life
situation, the two players often lack full information about some aspects of the problem. To tackle this
uncertainty, fuzzy set theory of Zadeh [47] offers powerful techniques and methods. The research on
fuzzy matrix games was initiated by Campos [8] and several results have already been obtained in this
direction of research. Just to mention a few recent works on some families of fuzzy matrix games, the
reader can consult the references [11, 18, 21, 31, 34, 35, 37–41, 44].

Another direction of research related to the study of matrix games is the investigation of constrained
matrix games. Indeed, in some real matrix games the choice of strategies is subject to linear inequality
constraints rather than being in whole strategy space. Such a matrix game is called a constrained matrix
game initially introduced by Charnes [9] and then later in some what more generally by Kawaguchi and
Maruyama [20]. Later, Dresher [12] gave a real example of the constrained matrix games. Owen [29]
showed that any classical constrained matrix game always has optimal strategies and game value of both
players are obtained by solving a pair of primal-dual linear programming problems.

In recent years, many research articles examined fuzzy constrained matrix games. Li and Cheng [22]
underlined that there is no method in the literature solving constrained matrix games in which payoffs
are represented by fuzzy numbers and studied fuzzy constrained matrix games using multi-objective
programming methods. Later, Li and Hong [24], proposed a method to solve constrained matrix games
with payoffs of triangular fuzzy numbers. In Li and Hong [23], an α-cut linear programming algorithm
for solving fuzzy constrained matrix games is considered. Nan and Li [27] established an effective linear
programming technique for solving constrained matrix games with interval payoffs. Mansoori et al. [26]
investigated the constrained matrix game with fuzzy payoffs and fuzzy constraints, using the concepts of
recurrent neural networks. A literature review of constrained matrix games with fuzzy payoffs is given
in the book of Verma and Kumar [44]. The authors discussed several existing methods and showed that
some mathematically incorrect assumptions have been considered in these methods. Then, they proposed
a novel method for solving fuzzy constrained matrix games. The book offers a comprehensive guide on
non-cooperative games with fuzzy payoffs to both students and researchers. In Verma [43], a new method
is proposed to find the complete solution of constrained matrix games with fuzzy payoffs.

In the present work, we focus on a constrained matrix game in which the payoffs and the con-
straint matrices are LR-fuzzy numbers. The LR-fuzzy number initialized by Dubois and Prade [13],
is a commonly used type of fuzzy numbers in various problems over the past few decades (see for
example, Refs. [1, 7, 15, 30, 50]). However, to the best of our knowledge, there is no study on con-
strained matrix games with both payoffs and constraints are LR-fuzzy numbers. In this study, we use
the chance-constrained method which is one of the major approaches for solving optimization problems
under various uncertainties. The proposed approach is based on chance constraints and on the concept of
a comparison of fuzzy numbers. First, we formulate the fuzzy constraints of each player as chance con-
straints with respect to the possibility measure. Second, using ranking function R, a crisp constrained
matrix game is obtained. Then, we introduce the concept of R-saddle point equilibrium. Using results
on ordering fuzzy numbers, sufficient existence conditions of this concept are provided. The problem of
computing this solution is reduced to a pair of primal-dual linear programs. Finally, the proposed method
is illustrated with the example of the market share problem.

The remainder of the paper is organized as follows. Section 2 reviews some notations and definitions
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about constrained matrix games and fuzzy sets theory. In Section 3, we present the fuzzy constrained
matrix game and we define the concept of R-saddle point equilibrium. Then, the existence of this concept
is proved. In Section 4, we explain the proposed methodology for solving the considered constrained
matrix game. An illustrative example is given in Section 5. Conclusion is made in Section 6.

2 Preliminaries

In this section, the basic definitions, involving matrix game, constrained matrix game, fuzzy sets and
fuzzy numbers, arithmetic on fuzzy numbers and ranking function are reviewed.

2.1 Constrained matrix games

In this sub-section, we recall some basic definitions and preliminaries used throughout our paper, namely
two person zero-sum matrix games and two person zero-sum constrained matrix games. For various
notations, terminology and basics related to this subject, the reader is referred to the work of Bector and
Chandra [5], and Verma and Kumar [44].

Let Rn denote the n-dimensional Euclidean space and Rn
+ be its non-negative orthant. Let A =

[ai j] ∈ Rm×n be an (m× n) real matrix and eT = (1,1, . . . ,1) be a vector of ones whose dimension is
specified as per the specific context. By a (crisp) two person zero-sum matrix game G we mean the
triplet G = (Sm, Sn, A) where Sm = {x ∈Rm

+, eT x = 1} and Sn = {y ∈Rn
+, eT y = 1}. In the terminology

of the matrix game theory, Sm (respectively Sn) is called the strategy space for player I (respectively
player II) and A is called the payoff matrix. Then, the elements of Sm (respectively Sn) which is in the
form x = (0,0, . . . ,1, . . . ,0)T = ei, where 1 is at the ith place (respectively y = (0,0, . . . ,1, . . . ,0)T = e j,
where 1 is at the jth place) are called pure strategies for player I (respectively player II). If player I
chooses ith pure strategy and player II chooses jth pure strategy then ai j is the amount paid by player II
to player I. If the game is zero-sum then ai j is the amount paid by player I to player II i.e. the gain of one
player is the loss of other player.

The quantity E(x,y) = xT Ay is called the expected payoff of player I by player II, as elements
of Sm (respectively Sn) are set of all probability distribution over I = {1,2, . . . , m} (respectively J =
{1,2, . . . ,n}). Also, it is a convention to assume that player I is a maximizing player and player II is a
minimizing player. As player I is a maximizing player and player II is a minimizing player, the expected
payoff for player I is the expected loss for player II. The triplet PG = (I,J,A) is called the pure form of
the game G, whenever G is the mixed extension of the pure game PG.

In the two person finite zero-sum game (matrix game) denoted by the triplet G = (Sm,Sn,A), Sm

refers to the (mixed) strategy space of player I, Sn refers to the (mixed) strategy space of player II, and A
refers to the payoff matrix which introduces the function E : Sm×Sn→ R given by

E(x, y) = xT Ay =
n

∑
j=1

(
m

∑
i=1

xiai j)y j,

called the expected payoff function.

Definition 1. ( [28]). (Solution of the game G) Assume that there exist mixed strategies x∗ ∈ Sm and
y∗ ∈ Sn such that

x∗T Ay∗ = max
x

min
y
(xT Ay) = min

y
max

x
(xT Ay).
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Then, (x∗, y∗) and v∗ = x∗T Ay∗ are called a saddle point and a value of the matrix game G, respectively.

An equivalence between two person zero-sum matrix game G = (Sm,Sn,A) and a pair of primal-
dual linear programming problems is established in [28]. This equivalence besides being interesting
mathematically, offers a very useful way to solve the given game G.

Theorem 1 ([28]). Every two person zero-sum matrix game G = (Sm,Sn,A) has a solution.

Theorem 2 ([28]). The triplet (x∗,y∗,v∗) ∈ Sm× Sn×R is a solution of the game G if and only if x∗ is
optimal for (LP), y∗ is optimal for (LD) and v∗ is the common value of (LP) and its dual (LD):

(LP)



max v
subject to
m

∑
i=1

ai jxi ≥ v,

x ∈ Sm,

(LD)



min w
subject to

m

∑
j=1

ai jy j ≤ w,

y ∈ Sn.

In some real-world matrix game problems, player strategies are subject to meet linear inequalities
rather than being in Sm or Sn. These situations lead to constrained matrix games initially studied by
Charnes [9].

Mathematically, a constrained matrix game with crisp payoffs is obtained by replacing the constraint
set of strategies Sm = {x ∈ Rm

+, eT x = 1} of player I with S1 = {x ∈ Rm
+, eT x = 1, Bx ≤ b} and Sn =

{y ∈ Rn
+, eT y = 1} of player II with S2 = {y ∈ Rn

+, eT y = 1, Dy ≥ d}, where B ∈ Rp×m, b ∈ Rp,
d ∈ Rq, D ∈ Rq×n, and p and q are a positive integers. The constrained matrix game CG is denoted
CG = (S1, S2, A).

Definition 2. [29] Assume that there exist mixed strategies x∗ ∈ S1 and y∗ ∈ S2 so that

x∗T Ay∗ = max
x∈S1

min
y∈S2

(xT Ay) = min
y∈S2

max
x∈S1

(xT Ay).

Then, (x∗,y∗) and x∗T Ay∗ are called a saddle point and a value of the constrained matrix game CG,
respectively.

The constraint ∑
i∈I

xi = 1 is equivalent to both ∑
i∈I

xi ≤ 1 and −∑
i∈I

xi ≤−1.

Similarly, the constraint ∑
j∈J

yi = 1 is equivalent to both ∑
j∈J

yi ≤ 1 and −∑
j∈J

y j ≤−1.

Let us define the following notations as in [29]:

• eT
1 = (1, . . . ,1) and eT

2 = (−1, . . . ,−1) as m vectors; cT = (bT ,1,−1) ∈ R1×(p+2) and HT =
(BT ,e1,e2) ∈ Rm×(p+2).

• eT
3 = (1, . . . ,1) and eT

4 = (−1, . . . ,−1) as n vectors; uT = (dT ,1,−1) ∈ R1×(q+2) and ET = (DT ,
e3,e4) ∈ Rn×(q+2).

Using these notations, the strategic sets of players I and II, are given, by S1 = {x∈Rm, Hx≤ c, x≥ 0}
and S2 = {y ∈ Rn, Ey≥ u, y≥ 0}, respectively.

The main theorem of the constrained matrix game theory asserts that every constrained matrix game
CG is equivalent to two linear programming problems (C−LP) and (C−LD) which are dual to each
other [9, 29].
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Theorem 3. An element (x∗, y∗) ∈ S1×S2 is a solution of the constrained game CG = (S1, S2, A) if and
only if there exist z∗ ∈ Rq+2, s∗ ∈ Rp+2 such that (x∗, z∗) and (s∗, y∗) are optimal for the mutually dual
pair of linear programming problems (C−LP) and (C−LD) :

(C−LP)



max uT z
subject to
ET z−AT x≤ 0,
Hx≤ c,
z≥ 0,
x≥ 0,

(C−LD)



mincT s
subject to
HT s−Ay≥ 0,
Ey≥ u,
s≥ 0,
y≥ 0.

(1)

2.2 LR-fuzzy numbers and ranking criteria

Here, we include some properties and concepts of fuzzy set theory, which are applied in the following
sections.

Definition 3. ( [47]) Let U be a universe set. A fuzzy set Ã in U is a set of ordered pairs, Ã =
{(x, µÃ(x)) | x ∈ U}, where the function µÃ : U 7→ [0, 1] is called membership function, which as-
signs to each elements x ∈ U a real number µÃ(x) in the interval [0, 1]. The value µÃ(x) represents
the degree of membership of x in Ã. Thus, the closer the value µÃ(x) to unity, the higher the degree of
membership of x in Ã.

Definition 4. ( [14]). A fuzzy number ã is said to be a LR-fuzzy number if

µã(t) =
{

L(a−t
α
), if t ≤ a,

R( t−a
β
), if t ≥ a,

where a is the mean value of ã, α and β (non negative) are its left and right spreads, respectively, L and
R are the left and right shape functions, respectively, defined as follows L, R : [0, 1] −→ [0, 1] with
L(1)=R(1)= 0 and L(0)=R(0)= 1 are decreasing and continuous. Using its mean value, left and right
spreads, and shape functions, a LR-fuzzy number ã is symbolically written as ã = (a, α, β )LR. In addi-
tion, we assume that a LR-fuzzy number degenerates to a real number as α = β = 0, i.e., (a, 0, 0)LR = a.

Definition 5. ( [13]). The α-cut, α ∈ [0, 1], of a LR-fuzzy number ã = (a, α1, β1) is a closed interval
defined by aα = {x|µA(x) ≥ α} = [aL

α ,a
R
α ], where aL

α and aR
α are the left and right endpoints of aα ,

respectively. For an LR-fuzzy number with invertible and non-increasing functions L and R, the α-cut is
characterized by [aL

α ,a
R
α ] = [a−α1L−1(α), a+β1R−1(α)].

Definition 6. ( [13]). (LR-Fuzzy numbers arithmetics) Let ã = (a1, α1, β1) and b̃ = (a2,α2,β2) be
two fuzzy numbers of LR type. Then, the addition, the subtraction and the scalar multiplication, are
respectively defined as ã+ b̃ = (a1 +a2, α1 +α2, β1 +β2), ã− b̃ = (a1−a2,α1 +β2,β1 +α2), and{

k.ã = (ka1, kα1, kβ1), if k ≥ 0, k ∈ R,
k.ã = (ka1,−kβ1,−kα1), if k < 0, k ∈ R.
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Definition 7. ( [48]). Given a universe set U, let P(U) be the family of crisp subsets of U and the set
function Pos : P(U) −→ [0, 1]. The triplet (U, P(U), Pos) is called a possibility space, where Pos
satisfies Pos(U) = 1, Pos( /0) = 0 and Pos(∪iEi) = sup

i
Pos(Ei) for any collection (Ei) in P(U).

Remark 1. 1. For each E ∈P(U), Pos(E) is the measure of the best case of occurrence of the event
E, i.e it is the maximal chance that the event E occurs. It expresses the decision maker’s optimism
about E.

2. Nec(E) = 1−Pos(E) gives the measure of the worst case of occurrence of the event E, i.e., it is
the minimal chance that E occurs. It expresses the decision maker’s pessimism about E.

We recall the following lemma for ordering fuzzy numbers due to Sakawa [32].

Lemma 1. ( [32]). Let λ̃1 and λ̃2 be two fuzzy numbers with continuous membership functions. For a
given confidence level α ∈ [0,1]:

Pos{λ̃1 ≥ λ̃2} ≥ α if and only if λ
R
1,α ≥ λ

L
2,α ,

Nec{λ̃1 ≥ λ̃2} ≥ α if and only if λ
L
1,1−α ≥ λ

R
2,α ,

where λ R
1,α ,λ

L
1,α and λ R

2,α ,λ
L
2,α are the left and the right side endpoints of the α-level sets (α-cuts)

[λ R
1,α ,λ

L
1,α ] and [λ R

2,α ,λ
L
2,α ], of λ̃1 and λ̃2, respectively.

An efficient approach for comparing fuzzy numbers is by use of ranking functions. We consider a
ranking function R : F(R) 7→ R, which maps each fuzzy number into real line, where a natural order
exists [6, 16, 25, 46, 49].

Definition 8. Let ã and b̃ be two fuzzy numbers, we define orders on F(R) by

ã >
R

b̃ if and only if R(ã)> R(b̃),

ã >
R

b̃ if and only if R(ã)> R(b̃),

ã =
R

b̃ if and only if R(ã) = R(b̃),

ã 6
R

b̃ if and only if b̃ >
R

ã.

There are several ranking functions in the literature [6, 16, 25, 42, 46]. For example, we recall the
following ranking functions

1. Malekis ranking function given in [25]:

R(ã) =
1∫

0

( inf
x∈ãr

+ sup
x∈ãr

)dr,
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where inf
x∈ã

and sup
x∈ã

are the lower and upper bounds of any r-level set ã of ã and both are represented by

finite numbers. According to the Definition 4 and Definition 5, an easy computation gives the expression
of R(ã) = 2a+ 1

2(β −α) for ã = (a,α,β )LR and L(t) = R(t) = max(0,1− t).
2. Hosseinzadeh’s ranking function given in [16] :

R(ã) = a+
1
4
(β −α), for ã = (a,α,β )LR.

Let us consider the linearity property restricted to positive scalars which is essential to establish our main
results:

(P1) R(γ ã+ b̃) = γR(ã)+R(b̃) for any LR-Fuzzy numbers ã, b̃ ∈ F(R) and any γ ∈ [0, +∞[.

Remark 2. It is easy to remark that:

- Maleki’s ranking function R(ã)= 2a+ 1
2(β−α) for ã=(a,α,β )LR and L(t)=R(t)=max(0,1−

t) satisfies property (P1).

- Hosseinzadeh’s ranking function R(ã) = a+ 1
4(β −α) for ã = (a,α,β )LR satisfies property (P1).

3 Constrained matrix games with fuzzy payoffs and fuzzy linear con-
straints

In this section, we formally introduce the constrained matrix game with payoffs and linear constraints
expressed with LR-fuzzy numbers. To difuzzify this game, we proceed as follows. Using the possibility
measure, we formulate the fuzzy constraints of each player as chance constraints. In our methodology
for solving this game, we propose the R-saddle point equilibrium solution which is based on a ranking
function. Then, we establish sufficient existence conditions of the solution. To this end, we use Lemma
1 for ordering fuzzy numbers due to Sakawa [32] and the ranking function R (Definition 8).

3.1 Problem Description and its Solution

A constrained matrix game in which the payoffs and the constraints matrices are LR-fuzzy numbers is
given as follows. Let Ã = [ãi j] denote the fuzzy matrix payoff of player I (the payoff matrix of player
II is −Ã), and B̃ = (b̃ki)p×m and D̃ = (d̃l j)q×n denote the fuzzy matrices which define the constraints of
player I and player II, respectively.

Thus, S̃1 = {x∈ X , B̃� b} and S̃2 = {y∈Y, D̃y� d} represent the fuzzy constraint sets of strategies
for players I and II, respectively, where d ∈ Rq, b ∈ Rp, p and q are a positive integers. Here � and �
are fuzzy versions of symbols ≥ and ≤ respectively (see Zimmermann [51]). We denote this game by
G(Ã) = (S̃1, S̃2).

Each player is interested in maximizing her/his payoff. Since the fuzzy constraints B̃x� b and D̃y� d
do not define a crisp feasible set, we assume that the constraints will hold with a possibility levels. Let
δ 1 = (δ 1

k )
p
k=1 ∈ [0, 1]p and δ 2 = (δ 2

k )
q
l=1 ∈ [0, 1]q, where δ 1

k ∈ [0, 1] is the possibility level for kth

constraint of player I, and δ 2
l ∈ [0,1] is the possibility level for lth constraint of player II. Thus, the fuzzy
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constraints of each player are replaced with the individual chance constraints. Hence, we obtain the
player’s strategies sets by:

S1(δ
1) = {x ∈ Rm | x ∈ X , Pos{B̃kx� bk} ≥ δ

1
k , ∀k ∈J1},

S2(δ
2) = {y ∈ Rn | y ∈ Y, Pos{D̃ly≥ dl} � δ

2
l , ∀l ∈J2},

with J1 = {1,2, . . . , p} and J2 = {1,2, . . . ,q}; B̃k = (B̃k1, B̃k2, . . . , B̃km), k ∈J1 is a kth row of the
fuzzy matrix B̃; D̃l = (D̃l1, D̃l2, . . . , D̃ln), l ∈J2 is a lth row of the fuzzy matrix D̃.

We denote the above zero-sum game with fuzzy payoffs and individual chance constraints by G(δ , Ã).
The game G(δ , Ã) is a constrained matrix game with fuzzy payoffs. When each of the players

chooses a strategy, a gain for each one of them is represented as a fuzzy number. The outcome of the
game has a zero-sum structure. So, one player’s loss in a transaction is equivalent to another player’s
gain (see Sakawa [33]).

Definition 9. (Fuzzy Expected Payoff) For any pair of the mixed strategies (x, y) ∈ S1(δ
1)× S2(δ

2),

fuzzy expected payoff of player I is defined as the fuzzy number Ẽ(x, y) =
m

∑
i=1

n

∑
j=1

xiy jãi j.

Definition 10. (R-saddle point equilibrium) A strategy profile (x∗, y∗) is a R-saddle point equilibrium
at (δ 1, δ 2) possibility levels in the game G(δ , Ã) if and only if

Ẽ(x∗, y)>
R

Ẽ(x∗, y∗)>
R

Ẽ(x, y∗), ∀(x, y) ∈ S1(δ
1)×S2(δ

2),

where R is a given ranking function (Definition 8).

3.2 Theoretical results

In Lemma 2, the strategy sets of the players under some conditions on the constraint matrices in G(δ , Ã)
are given.

Lemma 2. Assume that B̃ki = (Bki, α
(1)
ki , β

(1)
ki ) and D̃l j = (Dl j, α

(2)
l j , β

(2)
l j ), i ∈ I, j ∈ J, k ∈J1 and

l ∈J2, are LR-fuzzy numbers. Then, for all δ = (δ 1,δ 2) ∈ [0,1]p× [0, 1]q, we have

S1(δ
1) = {x ∈ Rm|x ∈ X , [Bk−L−1(δ 1

k )α
(1)
k ]x≤ bk, ∀k ∈J1},

S2(δ
2) = {y ∈ Rn|y ∈ Y, − [Dl +R−1(δ 2

l )β
(2)
l ]y≤−dl,∀l ∈J2},

where β
(1)
k = (β

(1)
k1 ,β

(1)
k2 , . . . ,β

(1)
km ),k ∈J1, β

(2)
l = (β

(2)
l1 ,β

(2)
l2 , . . . ,β

(2)
ln ), l ∈J2, α

(1)
k = (α

(1)
k1 ,α

(1)
k2 , . . . ,

α
(1)
km ),k ∈J1 and α

(2)
l = (α

(2)
l1 ,α

(2)
l2 , . . . ,α

(2)
ln ), l ∈J2, in which Bk = (Bk1,Bk2, . . . ,Bkm), k ∈J1 and

Dl = (Dl1,Dl2, . . . ,Dln), l ∈J2.

Proof. For all k ∈J1 and l ∈J2, we write

1) Pos{B̃kx≤ bk} ≥ δ 1
k ⇐⇒ Pos{

m

∑
i=1

B̃kixi ≤ bk} ≥ δ
1
k . Using Lemma 1, we obtain

Pos{
m

∑
i=1

B̃kixi ≤ bk} ≥ δ
1
k ⇐⇒

m

∑
i=1

xiBki−L−1(δ 1
k )

n

∑
i=1

xiα
(1)
ki ≤ bk.
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Then, S1(δ
1) = {x ∈Rm | x ∈ X , [Bk−L−1(δ 1

k )α
(1)
k ]x≤ bk,∀k ∈J1}, where Bk = (Bk1, Bk2, . . . , Bkm),

k ∈J1.
2) For the second player, similarly for all l ∈J2, we have

Pos{D̃ω
l y≥ dl} ≥ δ

2
l ⇐⇒

n

∑
j=1

y jDl j(ω)+R−1(δ 2
l )

m

∑
j=1

y jβ
2
l j ≥ dl, ∀l ∈J2.

So, S2(δ
2) = {y ∈ Rn | y ∈ Y,−[Dl +R−1(δ 2

l )β
(2)
l ]y ≤ −dl, ∀l ∈J2}, where Dl = (Dl1,Dl2, . . . ,Dln),

l ∈J2.

Associated with the fuzzy game G(δ , Ã), consider the crisp two zero-sum matrix game G(δ , A) =
(S1(δ

1), S2(δ
2), A), where A = [ai j], ai j = R(ãi j), i ∈ I, j ∈ J are real numbers corresponding to the

fuzzy numbers ãi j, i ∈ I, j ∈ J with respect to a given ranking function R (Definition 8).
The relationship between the R-saddle point equilibrium of the game G(δ , Ã) and the saddle point

equilibrium of the game G(δ , A) is characterised by the following theorem.

Theorem 4. Assume that B̃ki = (Bki, α
(1)
ki , β

(1)
ki ) and D̃l j = (Dl j, α

(2)
l j , β

(2)
l j ), i ∈ I, j ∈ J, k ∈J1 and

l ∈J2, are LR-fuzzy numbers. And let R be any ranking function (Definition 8) satisfying property (P1).
Then (x∗, y∗) ∈ S1(δ

1)×S2(δ
2) is a R-saddle point equilibrium at (δ1, δ2) levels, of game G(δ , Ã) if

and only if (x∗, y∗) is a saddle point equilibrium of the crisp constrained matrix game G(δ , A).

Proof. For all (x, y) ∈ S1(δ
1)×S2(δ

2), (x∗, y∗) is an R-addle point for game G(δ , Ã) if and only if

Ẽ(x∗, y)>
R

Ẽ(x∗, y∗)>
R

Ẽ(x, y∗) ⇔
m

∑
i=1

n

∑
j=1

x∗i y jãi j >
R

m

∑
i=1

n

∑
j=1

x∗i y∗j ãi j >
R

m

∑
i=1

n

∑
j=1

xiy∗j ãi j

⇔ R(
m

∑
i=1

n

∑
j=1

x∗i y jãi j)≥R(
m

∑
i=1

n

∑
j=1

x∗i y∗j ãi j)≥R(
m

∑
i=1

n

∑
j=1

xiy∗j ãi j).

Making use of the property (P1), we get the equivalence

Ẽ(x∗,y)>
R

Ẽ(x∗,y∗)>
R

Ẽ(x,y∗) ⇔
m

∑
i=1

n

∑
j=1

x∗i y jR(ãi j)≥
m

∑
i=1

n

∑
j=1

x∗i y∗jR(ãi j)≥
m

∑
i=1

n

∑
j=1

xiy∗jR(ãi j)

⇔
m

∑
i=1

n

∑
j=1

x∗i y jai j ≥
m

∑
i=1

n

∑
j=1

x∗i y∗jai j ≥
m

∑
i=1

n

∑
j=1

xiy∗jai j

⇔ x∗T Ay≥ x∗T Ay∗ ≥ xTAy∗. (2)

Eq. (2) means that (x∗,y∗) is a saddle point equilibrium for the crisp constrained matrix game G(δ , A).

For the rest of this paper, we assume that the ranking function R (Definition 8) satisfies property
(P1).

Definition 11. (R-value) If the strategy profile (x∗,y∗) is a R-saddle point equilibrium at (δ 1,δ 2) pos-
sibility levels in the game G(δ , Ã), then v∗(δ ) = x∗T Ay∗ is called the R-value of the constrained matrix
game G(δ , Ã).
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Theorem 5. Assume that B̃ki = (Bki, α
(1)
ki , β

(1)
ki ) and D̃l j = (Dl j, α

(2)
l j , β

(2)
l j ), i ∈ I, j ∈ J, k ∈J1

and l ∈J2, are LR-fuzzy numbers. Then, for all δ ∈ [0, 1]p× [0, 1]q, there exists a R-saddle point
equilibrium (x∗, y∗) for the game G(δ , Ã) which solves the linear programming problems.

max xT Ay
subject to

(Bk−L−1(δ 1
k )α

(1)
k )x≤ bk,k ∈J1,

x ∈ X ,


min xT Ay
subject to

−(Dl +R−1(δ 2
l )β

(2)
l )y≤−dl, l ∈J2,

y ∈ Y.

(3)

Proof. Let δ ∈ [0, 1]p× [0, 1]q. From Lemma 2,

S1(δ
1) = {x ∈ Rm | x ∈ X , [Bk−L−1(δ 1

k )α
(1)
k ]x≤ bk, ∀k ∈J1},

S2(δ
2) = {y ∈ Rn|y ∈ Y, − [Dl +R−1(δ 2

l )β
(2)
l ]y≤−dl, ∀l ∈J2},

are compact sets. For any δ ∈ [0,1]p× [0, 1]q, the inequality constraints

(Bk−L−1(δ 1
k )α

(1)
k )x≤ bk, k ∈J1,

−(Dl +R−1(δ 2
l )β

(2)
l )y≤−dl, ∀l ∈J2,

are linear. Then, S1(δ
1) and S2(δ

2) are convex and compact sets. Also, function xT Ay is a continuous
function. Then, using the minimax theorem of Von Neumann [45], we conclude that G(δ , A) has at least
one saddle point equilibrium (x∗, y∗), which solves the linear programming problems in Eq. (3). By
Theorem 4, (x∗, y∗) is a R-saddle point of the game G(δ , Ã) and v(δ ) = x∗T Ay∗ .

4 Methodology for solving the game G(Ã)

Based on the results in Section 3, we give an algorithm for the determination of the R-saddle point
equilibrium.

Remark 3. Under the conditions of Theorem 5, making use of the same notations as in the problems
in Eq. (1), with B = (Bki − L−1(δ 1

k )α
(1)
ki ) and D = (−(Dl j + R−1(δ 2

l )β
(2)
l j ), the pair of primal-dual

associated to the crisp constrained matrix game G(δ , A), is given as follows:

maxuT z
sub ject to
ET z−AT x≤ 0,
Hx≤ c,
z≥ 0,
x≥ 0,



mincT s
sub ject to
HT s−Ay≥ 0,
Ey≥ u,
s≥ 0,
y≥ 0.

(4)

According to the previous sections, the process for solving constrained matrix games with the payoffs
and the linear constraints are LR-fuzzy numbers is summarized as follows.
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Algorithm 1
Step 1. Identify players, denoted by I and II.
Step 2. Identify pure strategies of players I and II. Denote the sets of pure strategies of player I and
player II by I= {1, . . . , m} and J= {1, . . . , n}, respectively.
Step 3. Estimate the constraints matrices expressed with LR-fuzzy numbers, denoted B̃ and D̃.
Step 4. Estimate the players payoffs expressed with LR-fuzzy numbers and construct matrix Ã =
[ãi j]m×n.
Step 5. Each player chooses a possibility level, δ 1 for player I and δ 2 for player II, such that the
constraints will hold with a possibility levels.
Step 6. Identify the ranking function R.
Step 7. Construct the matrix A = [ai j]m×n, ai j = R(ãi j).
Step 8. Construct and solve the linear programming problems according to Eq. (4), and obtain the
R-value v∗(δ ) and the optimal strategies (x∗, y∗).

Remark 4. We note that obtaining a saddle point equilibrium in Step 8, is an easy task due to the prop-
erties of the primal dual programs. This interactive procedure depends on the choices of the possibility
levels provided by the players in Step 5.

Next, we provide an example to illustrate our methodology.

5 An illustrative example

We consider the situation in which two competing business firms plan to release a new product with
similar functions. In the target market, the demand amount of this new product is fixed. Consequently,
one company’s market share increases while another company’s market share decreases. By selecting
from its available marketing strategies, each firm seeks to draw in as many clients as feasible. Assume
that firms have two strategies: advertisements (strategy 1) and special offers (strategy 2). That is, the
pure strategy sets of player I (firm fI) and player II (firm fII) are I= {1,2} and J= {1,2}, respectively.
A mixed strategy determines how to divide its budget among its various marketing alternatives (strategy
1 and strategy 2). Due to the lack of precision of the available information, the manager of firm fI (resp.
fII) is not able to give precisely the funds that the company needs when it takes pure strategies 1, and 2,
respectively. Hence LR-fuzzy numbers are suitable to represent the these funds. Let B̃11 = (62,26,41)LR

and B̃12 = (43,28,22)LR be the funds which firm fI needs when it takes strategy 1 and 2, respectively.
And the firm fII needs the funds D̃11 = (28,31,30)LR and D̃12 = (2,15,40)LR when it takes strategy 1
and 2, respectively. Moreover, due to the lack of funds, the firm f1 only provides 40 (thousand dollars).
Thus, the mixed strategies of the firm fI may satisfy the constraint condition B̃11x1 + B̃12x2 � 40.

The firm fII only provides 17 (thousand dollars), the mixed strategies of the firm f2 may satisfy the
constraint conditions D̃11y1 + D̃12y2 � 17 or −D̃11y1− D̃12y2 �−17.

Due to lack of information and precision about the demands of their new products, the two managers
of both firms are not able to exactly forecast the sale amount of both firms’ product. Then the demands
of the products can be characterized by LR-fuzzy numbers. Assume that the payoff matrix is given as
follows:

Ã =

(
(−15,12,31)LR (13,21,21)LR

(21,11,17)LR (−14,22,18)LR

)
,
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with L(t) = R(t) = max(0,1− t) and R−1(t) = L−1(t) = 1− t, t ∈ [0,1].
Since the fuzzy constraints B̃11x1+ B̃12x2 � 40 and−D̃11y1− D̃12y2 �−17 do not define a crisp fea-

sible set, each player chooses a confidence level δ i
1, such that the fuzzy constraints hold with possibility

level.
Using chance constraints and the ranking function satisfying property (P1), coefficient matrices and

vectors of the primal-dual of Eq. (4) are obtained as follows.

A =

(
−26 26
46 −30

)
, H =

 36+26δ 1
1 15+28δ 1

1
1 1
−1 −1

, E =

 −2+30δ 2
1 −38+40δ 2

1
1 1
−1 −1

 ,

and cT = (40, 1, −1), uT = (−17, 1, −1). Choosing δ 1
1 = δ 2

1 = 0.5 and solving the problems in Eq.
(4), we obtain a R-saddle point equilibrium at δ = (δ 1

1 ,δ
2
1 ) possibility levels (x∗,y∗) = ((0.55, 0.45),

(0.0323, 0.9677)). Furthermore, we have the value of the game is v∗(δ ) = 0,9806.

6 Conclusions

In this paper, we proposed a new approach to deal with constrained matrix game in which the payoffs and
the elements of the constraints matrices are fuzzy numbers. The proposed approach combines the chance
constraints approach and the concept of comparison of fuzzy numbers. As a solution of the game, we
introduced the concept of R-saddle point equilibrium and the R-value of the game. We have established
theoretical results to justify the methodology. Indeed, in the case of LR-fuzzy numbers we formulated
an associated crisp chance constrained matrix game and sufficient existence conditions are obtained. An
example of the market competition game which clarifies the theory and the method discussed in our
work is given. The model and method obtained along this paper can be similarly obtained with necessity
measure.

Although numerous defuzzification methods for fuzzy constrained matrix games have been described
in the literature, to the best of our knowledge, till now, our approach is the first in the literature which
deals with constrained matrix game with fuzzy payoffs and fuzzy linear constraints using chance con-
straints. However, the proposed methodology closely depend on the ranking function, for which we loss
a lot of fuzzy information. Therefore, introducing a general methodology to solve the considered game
with a more general way represents a matter of further investigation and elaboration in a forthcoming
research. Besides, our future research directions will concentrate, for example, on the extension of our
approach to fuzzy constrained bi-matrix games and multiple criteria fuzzy constrained matrix games.
Finally, let us notice that our approach can be applied to real-world decision making problems such as
plastic ban problem [37] and natural desaster management [19].
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