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Abstract. In this paper, we intend to introduce the Sturm-Liouville fractional problem and solve it
using the collocation method based on Chebyshev cardinal polynomials. To this end, we first provide
an introduction to the Sturm-Liouville fractional equation. Then the Chebyshev cardinal functions are
introduced along with some of their properties and the operational matrices of the derivative, fractional
integral, and Caputo fractional derivative are obtained for it. Here, for the first time, we solve the equa-
tion using the operational matrix of the fractional derivative without converting it to the corresponding
integral equation. In addition to efficiency and accuracy, the proposed method is simple and applicable.
The convergence of the method is investigated, and an example is presented to show its accuracy and
efficiency.
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1 Introduction

One of the most important theories that play a brilliant role in modern mathematical analysis is the
general theory of Sturm-Liouville differential equations. This theory was first presented in 1837 in a
joint article by Sturm and Liouville and has been used in the analysis of many problems related to
mathematics, physics and other branches of science. The results of their research have been widely used
over the years and many results in delayed differential equations, differential and functional equations,
as well as partial differential equations are obtained by using them [3, 5, 6].
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In Sturm-Liouville theory, the differential equation of the form

− d
dx

(p(x)
du
dx

)+ f (x)u(x) = λw(x)u, x ∈ (a,b), (1)

is studied, in which the coefficients p(x), f (x) and w(x) are called the Sturm-Liouville coefficients. These
coefficients should be satisfied the following minimal conditions

• p, f ,w : (a,b)→ R,

• p−1, f ,w ∈ L1
c(a,b),

• w is a weight function on (a,b),

where the space L1
c(a,b) consists of the complex-valued functions on a compact interval, which are

Lebesgue integrable on all compact sub-intervals. In this problem, λ is called eigenvalue and finding it
is a part of solving the problem.

When the Sturm-Liouville coefficients satisfy the minimal condition, it can be shown that the Sturm-
Liouville problem with initial-boundary values has a solution [17]. If the Sturm-Liouville coefficients
and p′ are continuous functions, and also the functions p and w are positive functions, then the Sturm-
Liouville equation with boundary conditions

c1u(a)+ c2u′(a) = 0, c2
1 + c2

2 > 0,
d1u(a)+d2u′(a) = 0, d2

1 +d2
2 > 0,

is called the regular Sturm-Liouville problem. For such an equation, the eigenvalues are real, and we
have λ1 < λ2 < · · · → +∞. One can find a unique eigenfunction corresponding to the eigenvalue λi

(i = 1,2, . . .). After normalization through weighted inner product, these eigenfunctions introduce a
system of orthonormal basis.

Finding eigenvalues and eigenfunctions for this problem is very valuable considering that Sturm-
Liouville equation plays a very important role in both mathematics and mathematical physics. Among the
applications of this problem, we can mention the time-independent one-dimensional Schrödinger model,
which is one of the subjects raised in quantum mechanics. Also, this equation usually appears in applying
the Separation of variables method on partial differential equations such as the wave equation, Laplace’s
equation and the heat equation [3]. Due to the variable coefficients in this equation, there is no analytical
method that can solve a wide range of this type of equation. Therefore, we must introduce appropriate
numerical methods to overcome this problem. Among the existing methods, we may mention the Haar
wavelet method [7], boundary Value Methods [11], Sinc-Galerkin and differential transform methods
[4], differential quadrature method [20], homotopy analysis method [1], Sinc collocation method and
differential quadrature method [9].

Due to the importance and application of fractional calculations and fractional equations in various
sciences, the study of this branch of mathematics has attracted the attention of mathematicians. The
importance of the fractional Sturm-Liouville equation can be found in its relationship with the fractional
diffusion in a bounded domain [14]. Here, we refer to some of the numerical methods that are proposed
previously, including the Variational method [15], analytical solutions [18], Adomian decomposition
method [19], fractional differential transform method [10], and Finite element method [12].
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In this work, the problem we are looking to find its eigenvalues and eigenfunctions is the Sturm-
Liouville fractional problem

CDα
0 (pD(u))(x)+h(x)D(u)(x)+q(x)u(x)+λσ(x)u(x) = 0, x ∈ (0,1),α ∈ R+, (2)

in which D and CDα
0 assign the derivative operator and the Caputo fractional derivative, respectively. In

this equation, p(x) 6= 0, q(x) is the potential, and σ(x) the positive weight function. On the other hand,
the functions p(x), h(x), q(x), and σ(x) are assumed to be sufficiently regular. This equation includes
boundary conditions 

n

∑
j=0

di, ju( j)(a) = 0, i = 0, . . . ,J−1,

n

∑
j=0

di, ju( j)(b) = 0, i = J, . . . ,n,
(3)

where J < n, and the coefficients {di, j} for i, j = 0, . . . ,n are constant.
The outline of this paper can be summarized as follows. In Section 2, the Chebyshev cardinal func-

tions of the first kind and their properties are briefly introduced. Also, the fractional matrices of deriva-
tive, fractional integration and the Caputo fractional derivative are obtained in this section. Section 3 is
dedicated to applying the collocation method to solve the desired equation. The convergence analysis
also investigates in this section, and its result is mentioned as a Theorem. In Section 4, we illustrate the
efficiency and accuracy of the proposed method using a numerical example.

2 Chebyshev cardinal functions of the first kind

Given positive integer number ω , we put Y as a set of the roots of the Chebyshev polynomial of the first
kind Tω+1, i.e.,

Y := {y j : Tω+1(y j) = 0, j ∈Ω}, Ω := {1,2, . . . ,ω +1},

where {y j} j∈Ω are the roots of the Chebyshev polynomial Tω+1 on [−1,1] and are given by

y j := cos
(

2 j−1
2ω +2

π

)
, ∀ j ∈Ω. (4)

To generate the shifted Chebyshev polynomials T ∗
ω+1 on an arbitrary interval [a,b], we take the change

of variable as follows

T ∗ω+1(x) := Tω+1

(
2(x−a)

b−a
−1
)
, x ∈ [a,b]. (5)

It follows from the change of variable y =
(

2(x−a)
b−a −1

)
that the roots of T ∗

ω+1 can be obtained by x j =

(y j+1)(b−a)
2 + a. A significant case of the cardinal functions that use the orthogonal polynomials is the

Chebyshev cardinal functions. We define these functions as

ψ j(x) =
T ∗

ω+1(x)
T ∗

ω+1,x(x j)(x− x j)
, j ∈Ω, (6)
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where the subscript x indicates differentiation with respect to x. The main property of the cardinal
functions is that they satisfy

ψ j(xi) = δ ji, i ∈Ω, (7)

in which δ ji specifies the Kronecker δ -function. Given n ∈N, we denote the Sobolev space by Hn([a,b])
consisting of all functions p ∈ Cn([a,b]) such that Dn′ p ∈ L2([a,b]) for all N 3 n′ ≤ n, in which D
assigns the derivative operator. It follows from the definition of the Chebyshev cardinal functions that
any function p can be represented as an expansion based on these polynomials, i.e.,

pω(x)≈
ω+1

∑
j=1

p(x j)ψ j(x). (8)

Lemma 1 ([8]). Let n ∈ N be given and let {x j} j∈Ω be the shifted Gauss-Chebyshev points. We say that
the error of expansion (8) can be bounded and we have

‖p− pω‖L2([a,b]) ≤C0ω
−n|p|Hn,ω ([a,b]), (9)

where C0 is a constant and independent of n.

2.1 Operational matrix of derivative

The purpose of introducing the operational matrix is to simplify calculations. In fact, by finding the
general form to represent the derivative operator based on bases, we will no longer need to find the
derivative when applying the method. To this end, we introduce the (ω +1)-dimensional vector function
Ψ(x) whose j-th element is equal to ψ j(x). The operational matrix of the derivative satisfies the relation

D(Ψ)(x) = DΨ(x), (10)

where D denotes the derivative operator. Motivated by (8) and (10), it is easy to demonstrate that the
entries of the matrix D are computed by

D j,i = D(ψ j)(xi). (11)

To simplify the computations, there is another expression for Chebyshev cardinal polynomials [2], viz

ψ j(x) = ρ

ω+1

∏
k=1,k 6= j

(x− xk), (12)

where ρ = 22ω+1/((b− a)ω+1T ∗
ω+1,x(x j)). To derive the elements of D, by taking the derivative from

both sides of equation (12) with respect to x, we obtain

D(ψ j)(x) = ρD
ω+1

∏
k=1
k 6= j

(x− xk) = ρ

ω+1

∑
l=1
l 6= j

ω+1

∏
k=1

k 6= j,l

(x− xk)

=
ω+1

∑
l=1
l 6= j

T ∗
ω+1(x)

(x− x j)(x− xl)T ∗ω+1,x(x j)

=
ω+1

∑
l=1
l 6= j

1
(x− xl)

ψ j(x). (13)
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Now, it is easy to verify that if i = j, we have

D(ψ j)(xi) =
ω+1

∑
l=1
l 6=i

1
(xi− xl)

, (14)

and if i 6= j, we got

D(ψ j)(xi) = ρ

ω+1

∏
l=1

l 6=i, j

(xi− xl). (15)

2.2 Operational matrix of fractional integration

Before introducing the operational matrix of fractional integration, let us present the definition of frac-
tional integration.

Definition 1. The Riemann-Liouville fractional integral operator I α
0 of order α > 0 (ℜ(α) > 0) is

defined as

(I α
a u)(x) :=

1
Γ(α)

∫ x

0

u(t)
(x− t)1−α

dt, (x ∈ [0,1]; ℜ(α)> 0), (16)

One can verify that the fractional integral of the power function is also a power function, by simplic-
ity, i.e., (

I α
0 (t)β−1

)
(x) =

Γ(β )

Γ(β +α)
(x)β+α−1. (17)

Lemma 2 ([13]). Assuming ℜ(α) > 0, the fractional integration operators I α
0 can be bounded in

Lp(0,1) (1≤ p≤ ∞)

‖I α
0 u‖p ≤ K ‖u‖p ,

K =
(1−0)ℜ(α)

ℜ(α) |Γ(α)|
. (18)

Considering the function u ∈ L1[0,1] and ℜ(α) > 0, then it is easy to confirm that the function
I α

0 u(x) is an element of L1[0,1] [13]. It follows from the definition of Chebyshev cardinal functions
that the fractional integral from the Chebyshev cardinal functions is an L1[0,1] function. So, similar to
the operational matrix of derivative, there exists a square matrix of dimension (ω + 1)× (ω + 1) such
that the fractional integral of Chebyshev cardinal functions can be represented by it, viz

I α
0 Ψ(x) = Iα

Ψ(x). (19)

Thus, our aim is to find the elements of matrix Iα . Motivated by (8), one can show that the elements of
matrix Iα can be obtained by

Iα
j,i = I α

0 ψ j(xi). (20)

Before calculating these integrals, we can demonstrate

ω+1

∏
k=1
k 6=i

(x− xk) =
ω

∑
k=0

ri,kxω−k, (21)
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in which

ri,0 = 1,ri,k =
1
k

k

∑
l=0

si,lri,k−l, i = 1, . . . ,ω +1,k = 1, . . . ,ω,

and

si,k =
ω+1

∑
j=1
j 6=i

xk
j, i = 1, . . . ,ω +1,k = 1, . . . ,ω.

Therefore, the Chebyshev cardinal functions can be re-determined as follows

ψ j(x) = ρ

ω

∑
k=0

r j,kxω−k. (22)

Substituting (22) in (20), one can write

I α
0 ψ j(x) = ρI α

0 (
ω

∑
k=0

r j,kxω−k) = ρ

ω

∑
k=0

r j,kI
α

0 (xω−k) = ρ

ω

∑
k=0

r j,k
Γ(ω− k+1)

Γ(ω− k+α +1)
xω−k+α .

This gives rise to finding the elements of Iα , viz

Iα
j,i = ρ

ω

∑
k=0

r j,k
Γ(ω− k+1)

Γ(ω− k+α +1)
xω−k+α

i . (23)

2.3 Operational matrix of the Caputo fractional derivative

Given a finite interval [a,b] (−∞ < a < b < ∞), we specify the space of absolutely continuous functions
on [a,b] by AC[a,b].

Definition 2. Let n ∈ N. We say that u ∈ ACn[a,b], if the function u has continuous derivatives up to
order n−1 such that u(n−1) ∈ AC[a,b];

ACn[a,b] = {u : [a,b]→ C, & D (n−1)(u) ∈ AC[a,b]}.

Definition 3. Let ℜ(α)> 0 and the number n is determined by

n =

{
[ℜ(α)]+1, α /∈ N0,

α, α ∈ N0.
(24)

If u(x) ∈ ACn[0,1], the Caputo fractional derivative (cDα
0 u)(x) exists for almost every x ∈ [0,1] [13],

and we have

(cDα
0 u)(x) =

1
Γ(n−α)

∫ x

0

u(n)(t)dt
(x− t)α−n+1 =: (In−α

0+ Dnu)(x), (25)

Lemma 3. [13] Let ℜ(α)> 0 and n =−[α]. The Caputo fractional derivative of power function is also
a power function, i.e.,

(cDα
0 (x)

β−1)(x) =
Γ(β )

Γ(β −α)
(x)β−α , (ℜ(β )> n). (26)
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In the sequel, we aim to find a square matrix Dα that satisfies the following relation

cDα
0 (Ψ(x))≈ Dα

Ψ(x). (27)

To find the entries of the matrix Dα , the equation (25) can be used as follows

cDα
0 (Ψ(x)) = I n−α

0 Dn(Ψ(x))≈ Dn(In−α)Ψ(x).

Thus, the operational matrix of Caputo fractional derivative Dα is obtained via

Dα := Dn(In−α). (28)

3 Collocation method

Assume that P is the projection operator that maps any continuous function onto the space ∏ω where
∏ω denotes the space of all polynomials of degree ω . In the first step, we suppose that the solution of
the Sturm-Liouville equation (2) can be approximated using the Chebyshev cardinal functions, i.e.,

u(x)≈P(u)(x) =UT
Ψ(x) := uω(x), (29)

where U is an (ω + 1)-dimensional vector whose elements should be specified. Using the operational
matrix of derivative D, one can also approximate the derivative of the unknown function u, viz

D(u)(x)≈P(D(u))(x) =UT DΨ(x) := u′ω(x). (30)

Putting (29) and (30) back into (2), we have

CDα
0
(

pu′ω
)
(x)+h(x)u′ω(x)+q(x)uω(x)+λσ(x)uω(x) = 0, x ∈ (0,1). (31)

To give rise to the collocation method, we have to map all terms in (31) onto the space ∏ω using the
projection operator P , as follows.

• Let f1(x) := CDα
0 (w1)(x) where w1 := pu′ω . Firstly, we map the function w1(x) onto the space

∏ω using P , viz
w1(x)≈P(w1)(x) =W T

1 Ψ(x) =UT G1Ψ(x), (32)

where G1 is a square matrix of order (ω +1), and W1 is an (ω +1)-dimensional vector whose ith
element is obtained by p(xi)u′(xi). We can obtain such an equation due to the linearity of w1. The
function f1(x) can also be approximated using the fractional derivative matrix Dα , i.e.,

f1(x)≈P( f1)(x) = FT
1 Ψ(x) = CDα

0 (U
T G1Ψ)(x) =UT G1Dα

Ψ(x), (33)

in which F1 is an (ω +1)-dimensional vector.

• Putting f2(x) := h(t)u′ω(x), we have

f2(x)≈P( f2)(x) = FT
2 Ψ(x) =UT G2Ψ(x), (34)

where G2 is a square matrix of order (ω +1), and F2 is an (ω +1)-dimensional vector whose ith
element is obtained by h(xi)u′ω(xi) .
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• The third and fourth terms can also be mapped onto space ∏ω using the projection operator P ,
viz

q(x)uω(x) =: f3(x)≈P( f3)(x) = FT
3 Ψ(x) =UT G3Ψ(x),

σ(x)uω(x) =: f4(x)≈P( f4)(x) = FT
4 Ψ(x) =UT G4Ψ(x), (35)

in which matrices G3 and G4 are square matrix of order (ω + 1), and the vectors F3 and F4 are
(ω +1)-dimensional vectors whose ith element is obtained by

(F3)i = q(xi)uω(xi),

(F4)i = σ(xi)uω(xi),

respectively.

Substituting equations (33)-(35) into (31), one can obtain the residual function r(x) as

r(x) :=
(
UT G1Dα +UT G2 +UT G3 +λUT G4

)
Ψ(x) = 0. (36)

In the collocation method, we select a collection of points in the domain called the collocation points to
minimize the residual using these points. Setting the points {xi}ω+1

i=1 as the collocation points and using
(7), we have

UT G1Dα +UT G2 +UT G3 +λUT G4 = 0, (37)

Putting ϒ(λ ) := (G1Dα +G2 +G3 +λG4)
T , one can write

ϒ(λ )U = 0, (38)

where ϒ(λ ) is a square matrix that depends on λ .
Notice that Sturm-Liouville equation (2) contains non-zero eigenvectors [2, 4, 16], so matrix ϒ(λ )

must be an invertible matrix when λ is an eigenvalue of Sturm-Liouville equation (2). This is equivalent
to having

det(ϒ(λ )) = 0. (39)

As we know, det(ϒ(λ )) is the characteristic polynomial of the matrix ϒ(λ ), and so λ is the root of this
characteristic polynomial. Given Q := R or Q := C, it is convenient to demonstrate that

U ∈ ker{ϒ(λ )}= {U ∈ Qω+1+L : ϒ(λ )U = 0},

The vector U is forced to be a nonzero vector, so ϒ(λ ) has a nonzero kernel. Since the roots of the char-
acteristic polynomial are calculated approximately, then det(ϒ(λ )) is not equal to zero for any selected
λ exactly. Therefore, the eigenfunction is selected corresponding to the smallest eigenvalue of ϒ(λ ) as

uω(x) =
∑

ω+1
i=1 Uiψi(x)

‖∑
ω+1
i=1 Uiψi(x)‖2

,

Here, the eigenfunction is divided by its norm to obtain its normalized state.
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3.1 Convergence analysis

It follows from [8] that there is an optimal error approximation between P(Du) and Du , viz,

‖Du−P(Du)‖2 ≤CDω
1−n|u|Hn,ω ([a,b]), (40)

in which CD is a constant.
Suppose that uω is an approximate solution obtained using the method presented in the previous

section for the fractional Sturm-Liouville equation (2). Subtracting (2) from (31) and introducing zω :=
u−uω as a difference between the exact and approximate solutions, we have

Rω(x) := CDα
a
(

pz′ω
)
(x)+h(x)z′ω(x)+q(x)zω(x)+λσ(x)zω(x). (41)

Now we present a theorem to prove the convergence of the proposed method as follows.

Theorem 1. Consider the exact solution u(x) ∈ Hn([0,1]) of Eq. (2) is a sufficiently smooth function.
Also, assume that the function uω(x) be an approximate solution obtained using the proposed method.
Then, the residual decreases as ω tend to infinity, and we have

lim
ω→∞
‖Rω(x)‖2 = 0. (42)

Proof. Taking the L2-norm from both sides of (41), we get

‖Rω(x)‖2 = ‖CDα
a
(

pz′ω
)
(x)+h(x)z′ω(x)+q(x)zω(x)+λσ(x)zω(x)‖2

≤ ‖CDα
a
(

pz′ω
)
(x)‖2 +‖h(x)z′ω(x)‖2 +‖q(x)zω(x)‖2 + |λ |‖σ(x)zω(x)‖2, (43)

in which the triangle inequality is applied. Given that the functions p(x), q(x), σ(x), and h(x) are
assumed to be continuous, therefore these functions have a maximum value in [0,1]. Assume that M is a
fixed number such that

max{p(x),h(x),q(x),σ(x)}x∈[0,1] ≤M. (44)

Considering Lemma 1, 3 and using (40), one can write

‖Rω(x)‖2 ≤M
(
‖CDα

a z′ω(x)‖2 +‖h(x)z′ω(x)‖2 +(1+ |λ |)‖zω(x)‖2
)

≤ KMCDω
1−n|u(x)|Hn,ω ([a,b])+(1+ |λ |)MCω

−n|u(x)|Hn,ω ([a,b]).

Assuming Cmax := max{C,CD}, we can write this error bound more simply, i.e.,

‖Rω(x)‖2 ≤ KMδCmax(1+ |λ |)ω1−n|u(x)|Hn,ω ([a,b]).

According to the presented error limit, if u(X) is a sufficiently smooth function and n≥ 1, then the error
‖Rω(x)‖2 will decrease exponentially and we have lim

ω→∞
‖Rω(x)‖2 = 0.
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Table 1: An approximation of the first three eigenvalues for Example 1.
Approximate λ Exact λ

x α = 0.5 α = 0.6 α = 0.8 α = 0.9 α = 1 α = 1

λ1 2.121490 2.120820 2.231887 2.334695 2.467401 2.467401
λ2 13.859078 14.084862 16.895113 19.211283 22.206609 22.206611
λ3 24.238036 29.790027 41.982423 50.566853 61.685027 61.685029

4 Numerical experiments

In this section, we want to show the efficiency and accuracy of the proposed method by providing a
numerical example.

Example 1. Consider the following fractional Sturm-Liouville equation

CDα
0 u′(x)+λu(x) = 0, x ∈ [0,1],

with boundary conditions u′(0) = 0 and u(1) = 0. We can find the exact eigenvalues and eigenfunctions
when α = 1 they are equal to

ui = cos(λix), λi = (iπ +π/2)2,

To demonstrate the accuracy and efficiency of the method, we have provided tables and figures for this
example using the presented method. Table 1 is reported to show the approximate solution of the 3
first eigenvalue of this example for different choices of α . According to the approximations presented
in this table for α = 1 and comparing it with the exact value, the accuracy of the presented method is
obvious. We know that when the order of the fractional derivative tends to the integer value, the fractional
derivative will also tend to corresponding integer derivative, i.e.,

lim
α→n

cDα f (x) = f (n)(x),

lim
α→n−1

cDα f (x) = f (n−1)(x)− f (n−1)(0).

This can also be easily seen based on the results presented in Figure 1. In this Figure, the eigenfunc-
tions for the first and second eigenvalues and for different choices of α are presented. This figure also
confirms the convergence of the proposed method. We have also presented the Figure 2 to illustrate the
eigenfunctions for different values of α and λ .

Example 2. Consider the following fractional Sturm-Liouville equation

CDα
0 u′(x)+ x2u′(x)+ sin(x)u(x)+λu(x) = 0, x ∈ [0,1],

with boundary conditions u(0) = 0 and u′(1) = 0.
Table 2 is reported to show the approximate solution of the 3 first eigenvalue of this example for

different choices of α . In Figure 3, the eigenfunctions for the first and second eigenvalues and for
different choices of α are presented. This figure also confirms the convergence of the proposed method.
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Figure 1: Figures related to eigenfunctions corresponding to the first (left) and second (right) eigenvalue for
different α for Example 1.
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Figure 2: The first three eigenfunctions corresponding to eigenvalues α = 0.5 (left), α = 0.8 (middle) and α = 1
(right) for Example 1.

Table 2: An approximation of the first three eigenvalues for Example 2, taking ω = 15.
Approximate λ

x α = 0.5 α = 0.6 α = 0.7 α = 0.9 α = 99

λ1 1.175793 1.174806 1.212850 1.391709 1.515095
λ2 15.182269 14.462148 15.071249 18.502191 20.983234
λ3 24.762867 30.376813 35.517872 49.971304 59.556459
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Figure 3: Figures related to eigenfunctions corresponding to the first (left) and second (right) eigenvalue for
different α for Example 2.

5 Conclusion

This paper is dedicated to the numerical solution of the fractional Sturm-Liouville equation based on
the Chebyshev cardinal polynomials. For the first time, the operational matrix of the Caputo fractional
derivative for the Chebyshev cardinal polynomials is introduced in this work and applied to solve the
fractional Sturm-Liouville equation. The bound of error for the method is obtained, and the convergence
analysis is investigated. The convergence analysis is investigated, and an example confirms the accuracy
and efficiency of the proposed method for solving the desired equation.
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