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Abstract. In this paper, we aim to propose a new hybrid version of the Longstaff and Schwartz algorithm
under the exponential Levy Jump-diffusion model using Random Forest regression. For this purpose, we
will build the evolution of the option price according to the number of paths. Further, we will show how
this approach numerically depicts the convergence of the option price towards an equilibrium price when
the number of simulated trajectories tends to a large number. In the second stage, we will compare this
hybrid model with the classical model of the Longstaff and Schwartz algorithm (as a benchmark widely
used by practitioners in pricing American options) in terms of computation time, numerical stability and
accuracy. At the end of this paper, we will test both approaches on the Microsoft share MSFT as an
example of a real market.
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1 Introduction

A derivative can be described as a financial instrument contracted between two or more parties whose
value depends on the values of one or more agreed-upon underlying assets. Such as securities, indexes,
fixed income, currency (forex option), etc. Hedgers might use derivatives to minimize the risk of future
market movements while speculators may use derivatives to make profits. The valuation of derivatives
has been the subject of extensive research in both academia and industry. Except for simple derivatives
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such as futures, forwards and swaps. A large range of complex derivatives are valued by using numerical
methods as the three main approaches to value complex derivatives; the tree [6], PDE [14] and Monte
Carlo. However, due to the complexity of the implementation and numerical constraints (curse of di-
mensionality), the tree approach and the classical finite difference PDE approach are not practical for
the pricing of high-dimensional derivatives. Therefore, the Monte Carlo method is commonly used in
the valuation of high-dimensional derivatives. The Monte Carlo method must include some additional
numerical techniques to value early-exercising instruments, such as American options, Bermuda options,
structured callable bonds, etc. Hence, in the order to find the appropriate exercise strategy to price the
above derivatives, various strategies have been proposed. As far as these strategies are concerned, it is not
computationally feasible to perform a Monte Carlo simulation at the beginning of the exercise period to
calculate the expected profit from continuation value. Barraquand and Martineau [3] devised a stratified
state technique that sorts stock price paths by a state variable (rather than the stock price). However, an
estimate of the error in the results cannot be derived using Barraquand and Martineaus method. Broadie
and Glasserman [10] suggested a simulated tree method for pricing American options as well as upper
and lower bounds for these options. Longstaff and Schwartz [20] suggested a least-squares Monte Carlo
algorithm to price American options which involves a least-squares regression within the early exercise
time to calculate the expected return from continuation value. Stentoft [26] developed a least-squares
Monte Carlo method widely used by practitioners because it is computationally efficient with straight-
forward construction. The main advantage of the Monte Carlo simulation is its fast convergence rate
which is independent of the number of underlying variables as well as its easiness in handling a wide
range of models.

On the other hand, Random Forest (RF) combines basic predictors or estimators that are trees giving
rise to what is now called the decision tree method. Generally, this method is the ensemble technique
whose general principle (Dietterich [12]) is to build a collection of predictors. Then, aggregate them all
together. In regression, aggregating the predictions of q predictors is, for example, the same as averaging
them. Each predictor provides a prediction ŷl , and the final prediction is then 1

q ∑
q
l=1 ŷl . In classification,

aggregation consists in making a majority vote among the class labels provided by predictors. Histori-
cally, Kwok and Carter [18] are the first to mention ensemble decision trees in literature. The authors
show that averaging many decision trees with different structures consistently outperforms any other
ensemble technique. Later, Breiman [7] was one of the first to emphasize, both theoretically and prac-
tically, the combination of numerous versions of an estimator into an ensemble technique might result
in significant improvements in accuracy. Dietterich and Kong [16] proposed to randomize the choice of
the best split at a given node by uniformly selecting one of the 20 best splits of node t at random. Amit
and Brunel [1] presented a randomized form of the tree induction approach that involves searching for
the best split at each node over a random sub-sample of the variables. Later on, Ho [13], inspired by
the principles of bagging [7] and random subsets of variables [1], proposed to use the random subspace
method to construct a decision forest whose trees are grown on random subsets of the input variables
rather than all variables. Breiman [7, 9] combined Bagging with the random variable selection at each
node in his seminal paper on RF. Using both methodologies, he generated one of the most effective ma-
chine learning algorithm which works unexpectedly well for almost any task. The author empirically
shows that RF can compete with boosting [2] and arcing algorithm [8] which are both designed to reduce
bias, whereas forests are focused on reducing variance in addition to bias. While the original founda-
tions are the result of the contributions of many authors, Breiman is often considered the father of the
randomized tree forest. Part of his success can be attributed to his groundbreaking theoretical analysis
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which always complemented his empirical analysis of algorithms.
This paper is devoted to the interesting issue of modelling the American option price with the sharp

change in asset prices using RF with random inputs. In Section 2, we are presenting the theoretical
framework of the least squares and RF regression in the Longstaff and Schwartz algorithm. In Section 3,
we are focusing on the numerical implementation of the classical Longstaff and Schwartz algorithm and
compare it to the RF regression approach. Furthermore, we are highlighting the theoretical and asymp-
totic convergence towards an equilibrium price. At the end of this paper, we are comparing between
the two approaches based on real market data such as Microsoft’s MSFT put option as an example from
Yahoo Finance.

2 A conceptual model for pricing American option

2.1 Levy Jump-diffusion for forward simulation of asset price

The source of asset price jumps, according to Merton [23], can be generally produced by a specific
event in the firm or its industry which might have a limited impact on the rest of the market. The
jump component will be then uncorrelated with the market and constitute an unsystematic risk. Assume
that

(
Ω,F ,(Ft)0≤t≤T ,P

)
is a filtered probability space, where T ≥ 0 and Wt =

(
W 1

t , . . . ,W
d

t
)

a d-
dimensional Brownian motion. N is the Poisson random measure on B([0,T ])⊗ E , where B([0,T ])
is the Borel σ -algebra on [0,T ], and (E,E ) is a measurable space, where E = Rq. We define E as the
Borel σ -algebra on E. P is the probability measure on F . The filtration (Ft)0≤t≤T is completed with
all P-null sets, right continuous and Ft = FW,N

t is generated by (Wt ,N(·, [0, t], ·)) for t ∈ [0,T ]. Assume
that F = FW,N

T , W and N are mutually independent under P. Suppose that the compensating measure
of N is v( dt, de) := v( de)dt, where v is a σ -finite measure on (E,E ) satisfying

∫
E

(
1∧|e|2

)
v(de)< ∞.

The corresponding compensated Poisson random measure is defined by Ñ(ω,dt, de) := N(ω,dt, de)−
v( de)dt.

Definition 1 ( [15] (A Quick reminder of the Levy process)). A stochastic process (Xt)t≥0, defined on
(Ω,F ,P), and has its values in Rd with RCLL trajectories, is a Levy process if

• Its increments are independent: for each increasing sequence t0, . . . , tn the random variables X1−
X0, . . . ,Xtn−Xtn1

are independent.

• Its increments are stationary: Xt+h−Xt do not depend on t.

• It verifies the property of stochastic continuity: for all ε > 0, lim
h−→0

P(| Xt+h−Xt |≥ ε) = 0, i.e., the

probability to have two jumps at the same time is 0.

Definition 2 ( [17] (Levy Jump diffusion process)). A stochastic process (Xt)t≥0, defined on (Ω,F ,P),
and has its values in Rd with RCLL trajectories, is a Levy Jump diffusion process if

dXt = rdt +σdWt + JtdÑt , (1)

where r is the risk-free rate, σ is a constant volatility and Jt is the jump amplitude of Ñt the compound
Poisson process at time t. We note (Ot)t∈[0,T ] as the payoff process of (St)t∈[0,T ] at time t. In the following,
we assume that the underlying (St)t=t0,...,tN is a Levy Jump diffusion process.



232 M. Mohamed, Z. Mehdi, D. Boubker

Definition 3 ( [11] (Snell Envelope)). We define the Snell Envelope (Ut)t≥0 as the value of the American
option at t, and it is given as Ut = esssupτ∈Γt

E[Oτ |Ft ], where Γt is the set of all Ft-stooping time in
[t,T ].

Theorem 1 ( [24] (First Fundamental Theorem of Asset Pricing)). There must be at least one risk-neutral
probability measure Q is the equivalent of the initial probability measure P (i.e., Q(A) = 0⇔ P(A) =
0 ∀A ∈ F) for a discrete market on a discrete probability space

(
Ω,F ,(Ft)0≤t≤T ,P

)
to be arbitrage-

free.

In a complete market, the existence and uniqueness are satisfied. For further explanations, see the
second fundamental theorem of asset pricing in [5].

Theorem 2 ( [24]). Following the same notations as above, in a free arbitrary market, and under an
appropriate equivalent measure Q, the price at time t is the conditional expected payout at T , i.e.,

Ut = E[e(T−t)rUT |Ft ].

Hence, e−r(T−t)Ut is a martingale under Q. Such an equivalent martingale measure is also called a
measure risk-neutral because the return on the risk-free investment is the same as the expected return on
the asset.

2.2 Dynamic programming of the Longstaff and Schwartz algorithm

To emphasize the effectiveness of the Longstaff and Schwartz algorithm, we compare it to the approach
of Tsitsiklis and Roy [27]. In the following, we assume that π = {t0 = 0, . . . , tN = T} is the set of possible
exercise times (Bermudian option) with the following dynamic algorithm{

UtN = OtN ,
Utk = max(Otk ,E[Utk+1 |Ftk ]).

(2)

This dynamic programming algorithm is based on the re-simulation of paths at each time step and is
obtained from the Snell Envelope. On the other hand, the Longstaff and Schwartz algorithm uses the
same trajectory for each time step due to its dynamic programming that depends on the stopping time
(see system 3) instead of the value function as in the case of Tsitsiklis and Roy [27]. This approach is
very advantageous because of its robustness, low computational burden and time-saving compilations.{

τN = tN ,
τk = tk1Otk≥E[Otk+1 |Ftk ]

+ τk+11Otk≤E[Otk+1 |Ftk ]
,

(3)

where τk is the smallest optimal stopping time after tk. The first line of system (3) highlights the fact that
the Snell Envelope is equal to the payoff at time T . The second line is a comparison between the payoff
at time tk and the conditional expectation of the payoff at time tk+1 on Ftk that we design by continuation
value. Now, the main question that arises is how to approximate the conditional expectation.

Theorem 3 ( [22]). Assume that (Xt)t=0,...,T is a Markovian process. There is φk which is a Ft measur-
able function where

E[Otk+1 |Ftk ] = E[Otk+1 |Xtk ] = φk(Xtk).
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Because of the orthogonality of conditional expectation in L2 we can compute φk by the least squares
regression φk(Xtk) = infφ∈Φ E[|Otk+1−φ(Xtk)|2], where Φ is the set of L2(σ(Xtk)) functions. The classical
numerical Longstaff and Schwartz algorithm is based on the approximation of the conditional expectation
by a finite p-dimensional vector (e.g., polynomials basis, logistic function, etc.) in L2 space. Let ϕ =
(ϕ1,ϕ2, . . . ,ϕp) be a finite p-dimensional basis of functions in L2, subsequently, φk is written as follows
φ

p
k (Xtk ,θk) = ∑

p
n=1 θnϕn(Xtk).

2.3 Convergence of Monte Carlo simulation

Let {S(m)
t0 , . . . ,S(m)

tN } be the price paths and {O(m)
t0 , . . . ,O(m)

tN } the payoff paths, where m ∈ {1, . . . ,M}. We
present the least squares algorithm with Monte Carlo approximation policy as τ̂

p,(m)
N = tN ,

τ̂
p,(m)
k = tk1

O(m)
tk
≥φ

p
k (S

(m)
tk

,θ̂ p,M
k )

+ τk+11
O(m)

tk
≤φ

p
k (S

(m)
tk

,θ̂ p,M
k )

,
(4)

where τ̂
p,(m)
k is the smallest optimal stopping time after tk on the mth path for the p-dimensional approx-

imation. Hence, the conditional expectation E[Otk+1 |Ftk ] is computed by the following minimization
problem

θ
p
k = arg inf

θ∈Θ

E(| Oτ̂
p
k+1
−φ

p
k (Stk ,θ) |

2),

or, in another way, by its Monte Carlo approximation

θ̂
p,M
k = arg inf

θ∈Θ

1
M

M

∑
m=1
| φ p

k (S
(m)
tk ,θ)−O(m)

τ̂
p,(m)
k+1

|2,

where Θ is a finite set in R. The coefficients (θ̂ p,M
k )k=1,...,N give us convenient multipliers of basis vectors

in L2 for determining the optimal policy of system (4). Thus, the option price at time 0 is obtained as
U p

0 = E(Oτ̂
p
1
), where τ1 = inf{k ∈ {1, . . . ,N} | Ok =Uk}. Therefore, the Monte Carlo approximation is

U p,M
0 =

M

∑
m=1

O(m)

τ̂
p,(m)
1

.

Theorem 4. Let 0 ≤ j ≤ N and we assume that ϕ p(St j) = (ϕ1(St j), . . . ,ϕp(St j)) be a total basis in
L2(σ(St j)). Then

lim
p→+∞

E(Oτ
p
j
|Ft j) = E(Oτ j |Ft j) in L2.

Proof. See [11].

This result can be proved theoretically but not numerically. Unlike the following convergence result.

Theorem 5. Assume that for 0 ≤ j ≤ N, P(β jϕ(St j) = Ot j) = 0, and the simulated M paths are inde-
pendent, then lim

M−→+∞
U p,M

0 =U p
0 almost surely.

Proof. First of all, we prove that for 0≤ j ≤ N, 1
M ∑

M
k=1 Ok

τ
k,p,M
j
−→O

τ
p
j
, when M −→+∞ almost surely.

Then, we conclude our result (see [11]). The numerical illustration of this theorem is shown in Figures
3-6.
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2.4 Least squares regression algorithm

Let p be the number of regressors (dimension of L2 basis), M the number of paths. We aim to calculate the
least squares coefficients β = (α,β1,β2, . . . ,βp). The orthogonal projection of O(StN ) on L2(σ(StN−1)) is
the vector α +β1ϕ1(StN−1)+ · · ·+βpϕp(StN−1). At time tN−1 we use an ordinary least squares backward
to regress O(SN) (on the space generated by these regressors ϕ1(StN−1), . . . ,ϕp(StN−1)) by minimizing
O(StN )−α−β1ϕ1(StN−1)−·· ·−βpϕp(StN−1). In this case the continuation value becomes

φ
p

tN−1 = E[e−r∆tO(Si
tN )|StN−1 ]≈ e−r∆t(α +β1ϕ1(StN−1)+β2ϕ2(StN−1)+ · · ·+βpϕp(StN−1)). (5)

On each trajectory from M′ in the money paths at time tN−1 we obtain the least squares coefficients β̂tN−1

by the least squares estimators

β̂tN−1 =


αtN−1

β1,tN−1
...

βp,tN−1

=
(
ST S
)−1

ST (O(S1
T ) · · · O(SM′

T )
)
,

where

S =

ϕ1(S1
tN−1

) · · · ϕ1(SM′
tN−1

)
...

. . .
...

ϕp(S1
tN−1

) · · · ϕp(SM′
tN−1

)

 .

Thus, we apply Eq. (5) backward for ttN−2 , tN−3, . . . , t0 = 0.

3 Random Forest RI algorithm

3.1 Methodology

Random Forest-RI stands for Random Forest with Random Inputs which is a predictor obtained by
aggregating a set of predictors by each of the following trees {h(·,θk),k = 1, . . . ,B}. Their construction
principle is first to generate several bootstrap samples (L Θ1

n , . . . ,L
Θq

n ). Then, on each sample L Θi
n , a

variant of the Cart algorithm (see the Figure 1) is applied. More precisely, a tree is constructed in the
following way: to cut a node, we randomly draw a number m′ of variables and look for the best cut
only according to the m′ selected variables (e.g., the inter-class variance as a criterion). Moreover, the
constructed tree is completely developed (i.e., maximal tree) and it is not pruned (see [9]). The collection
of trees obtained is finally aggregated (e.g., average in regression h(·) = ∑

B
b=1 h(·,θk)). The drawing of

m variables at each node represents an additional hazard compared to the Bagging method [7]. For RF-
RI, there are therefore two sources of randomness for generating the collection of individual predictors:
the randomness due to the bootstrap and the randomness of the choice of variables to cut each node of
the tree. Thus, we disturb both the sample on which we launch the Cart algorithm and the core of the
Cart construction. This random drawing of variables to cut out nodes had already been used by Amit
and Geman [1] in image recognition problems. Their method greatly influenced Leo Breiman [9] in his
development of RF-RI.
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Algorithm 1 RF-RI for pricing American option
1: Let S be a multi-dimensional underlying and (Otk)k=0,...,N the discounted payoff at time tk.
2: Generate

(
S(m)|t0,...,tN , m = 1, . . . ,M

)
which are M independent copies of (St1 , . . . ,StN ).

3: Let τ̂
(m)
N = tN m = 1, . . . ,M.

4: for k = N−1 to 1 do
5: Inputs RF-RI:
6: dL

k = {(S(1)tk ,O(1)
tk+1

), . . . ,(S(L)tk ,O(L)
tk+1

)}, L in the money path samples from M samples.
7: B number of trees.
8: m′ ∈ N∗ the number of underlyings to cut a node.
9: for i = 1 to B do

10: θi draws bootstrap sample from dL
k .

11: Build a tree by the Cart algorithm. Each split is selected to minimize the inter-variance into the
resulting node. This tree gives rise to the predictor h(·,θi).

12: end for
13: Output:
14: for m = 1 to M do
15: τ̂

(m)
k = tk1

O(m)
tk
≥h(S(m)

tk
)
+ τk+11

O(m)
tk
≤h(S(m)

tk
)
, where the continuation value is

φk(S
(m)
tk ) = h(S(m)

tk ) =
B

∑
i=1

h(S(m)
tk ,θi), m = 1, . . . ,L.

16: if O(S
τ̂
(m)
k
)≥ φk(tk,S

τ̂
(m)
k
) then

17: The early exercise time (i.e., the optimal stopping time on each trajectory) on each trajectory
is τ̂

(m)
k = τi, i = 1, . . . ,M, if it has not taken place previously.

18: end if
19: end for
20: end for
21: The value of the American option at time t = 0 is

UM
0 = max(φ0 (St0) ,

M

∑
i=1

exp(−rτi)O(Si
τi
)).

Remark 1. When we have a small number of variables selected in the Cart algorithm, this comes closer
to a random partition of the selected variables, e.g., if m′= 1 the selection of variable is chosen randomly,
only the cutting axes di define the distribution. Hence, the random selection of variables i.i.d decrease
the correlation between trees, and subsequently, the variance of the aggregated estimator decreases. On
the other hand, the random choice generates a bad fit on the learning sample and later increases the
bias of our model. We can also emphasize the influence of the chosen parameters including the number
of observations in the final nodes (before stopping growing trees) on the choice of m′ and d. Indeed, in
the instance where a small number of observations in the final nodes is chosen. Then, we have a large
variance and a weak bias. In this situation, we tend to decrease m′. In the instance where a large number
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Figure 1: Cart algorithm illustration of one grown tree m = 2.

of observations is chosen in the final nodes, we will have a higher bias and a lower variance. Then, we
try to increase the depth of trees (numbers of d, i.e., card(d)) or improve the criterion of the choice di. In
many programming languages, the Default choice of the final observation is m′ = p

3 for regression and
m′ =

√
p for classification. Other discussions can be developed about evaluating this model (Out Bag

Error and Importance sampling) but we are not going any further on these points.

4 Numerical implementation

According to the same logic in the work [21] in which the study revolves around the comparison of
the asymptotic behaviour of Black and Sholes and Levy Jump-diffusion in the classical algorithm of
Longstaff and Schwartz. We will apply the same methodology under Levy jump-diffusion to build the
equilibrium price for our new hybrid algorithm using RF-RI regression instead of the least squares re-
gression. In the simple case of a single underlying where the random subspace [13] is excluded, we
limit ourselves to the bagging method [7]. Moreover, we will compare the new hybrid algorithm to the
classical Longstaff and Schwartz algorithm as a benchmark.

4.1 Forward simulation of trajectories by Levy Jump-diffusion

Let NT be the number of jumps between 0 and T = 1. Ti, i = 1, . . . ,NT are the jump times. We break
down the interval [0,T ] in N equal time periods ∆t = T/N to build the discretization t0 = 0, . . . , tN = T ,
where N = 1000 and therefore we use Euler scheme to simulate S by discretizing Eq. (1) as

S(t j+1)−S(t j) = r∆t +σW∆t +
NT

∑
i=0

Ji, (6)
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Trajectories of the underlying price modeled under a Jump-Diffusion process

Figure 2: Levy Jump-diffusion asset paths with λ1 = 1, λ2 = 1/4 and S0 = 0.

where W∆t ∼ N(0,∆t), hence trajectories St |t=t0,...,t=tN , where S0 = 80$ are calculated from the applica-
tion step-by-step of Eq. (6) as follows: first of all we generate a Wiener process with volatility σ = 4%
and free risk rate r = 2%, wi = Ti+1−Ti as the process of duration between jumps which follows expo-
nential law with the parameter λ2 = 1

4 (i.e. on the average we have 1
λ2

jumps in the meantime [0,T ]),
subsequently, we simulate time of jumps as Ti = ∑

i
j=1 w j up to TNT , where NT = ∑

∞
i=1 1

∑
i
j=1 w j<T is the

total number of jumps. As the case may be, we can generate negative exponential law for the jump size
Ji with its parameter λ1 = 1, i.e., losses which follow exponential laws (see the example of Figure 2).

4.2 Backward simulation of least squares regression

We consider the case of p = 2 (L2 basis with three polynomial vectors) to highlight the ordinary least
squares regression algorithm at time tN−1. For example, we choose the following form of the regression
function ϕ = (ϕ0(StN−1) = 1,ϕ1(StN−1) = StN−1 ,ϕ2(StN−1) = S2

tN−1
). Let β̂ = (α̂tN−1 , β̂1,tN−1 , β̂2,tN−1) be the

estimator of the least squares (see Subsection 2.4) which minimizes the following error

M′

∑
i=1

[O(Si
tN )−α−β1Si

tN−1
−β2Si2

tN−1
]2.

At each trajectory, at the time tN the value of the option is equal to the terminal payoff O(Si
tN ), at the time

tN−1 we estimate the continuation value if the trajectory is in-the-money and we reject out-of-money tra-
jectories. So, on each trajectory, we have M′ couples (Si

tN−1
,O(Si

tN )) among M trajectories which explain
O(Si

tN−1
), using regressors 1,ϕ1(StN−1) = StN−1 ,ϕ2(StN−1) = (StN−1)

2. According to Eq. (5) at time tN−1 on
trajectory i the continuation value is

φ
2
k (tN−1,Si

tN−1
) = E[e−r∆tO(Si

tN )|S
i
tN−1

= StN−1 ]
∼= e−r∆t(α̂tN−1 + β̂1,tN−1Si

tN−1
+ β̂2,tN−1(S

i
tN−1

)2).
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Figure 3: Numerical convergence of least squares Monte Carlo. Confidence level is 95% (the estimated
value of the American option in blue, upper bound in red and lower bound in green). M from 100 to
1000 by 10 steps.

We notice that the intrinsic value e−r∆tO(Si
tN ) represents the discounted cash flows earned at time tN in

the case that the option is not exercised at time tN−1. Thus, we make a comparison between the payoff
O(Si

tN ) and φ
p
k (tN−1,Si

tN−1
) on each trajectory if O(Si

tN )≥ φ
p
k (tN−1,Si

tN−1
). The early exercise of the option

has therefore taken place at time tN−1 if it has not taken place previously. Hence, the value of option at
time tN−1 on trajectory i is

U2,i
tN−1 = max(O(Si

tN−1
)),φ p

k (S
i
tN−1

)).

We do the same for all times tN−2, . . . , t0. Finally, an updated payoff is assigned to each trajectory i
exp(−rτi)Oi

τ or is equal to 0 in the event of no exercise. Note that τ ∈ {t0 = 0, . . . , tN = T} is the first
time when O(Si

tN )≥ φ
p
k (tN−1,Si

tN−1
) and as previously proved this is an optimal exercise time. Lastly, we

estimate the final price of the option at time t0 by

U2,M
0 =

M

∑
i=1

exp(−rτi)O(Si
τi
).

Figures 3, 4 depict the backward least squares in Longstaff and Schwartz algorithm (blue line) based on
the Levy Jump-diffusion implemented in the previous Subsection 4.1.
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Convergence du modèle Longstaff Shwatrz, sous-jacent modélisé avec un processus de Saut-Diffusion

Figure 4: Numerical convergence of the least squares Monte Carlo Longstaff and Schwartz. Confidence
level is 95% (the estimated value of the American option in blue, upper bound in red and lower bound in
green). M from 100 to 5000 by 10 steps.

4.3 Numerical stability and performance of the hybrid RF algorithm compared to the
least squares regression

Similarly, as the Algorithm 1 (RF implemented with fitrensemble1 function in MATLAB) and based on
the Levy Jump-diffusion process implemented in Subsection 4.1 we implement the RF hybrid algorithm
according to the number of simulated paths, where the strike is K = 100$. Hence, we illustrate the
numerical convergence of the option price toward an equilibrium price (U2,M

0 = 21.8270$ for the RF
algorithm and U2,M

0 = 21.8270$ for the least squares algorithm by using M = 10000 paths). On the
other hand, we compare the empirical stability of both algorithms in Figures 4, 6, especially, in terms of
accuracy in Table 1 and computational time in Table 2. We notice in this example that the least squares
algorithm stabilizes the size of the confidence interval numerically when the M tends to M = 5000 better
than the hybrid RF.

Table 1: Equilibrium price and confidence interval according to the number of samples for the least
squares (LS) and RF algorithms with a confidence level 95%.

Trajectories mean RF min RF max RF mean LS min LS max LS
M=1000 22.41 22.2234 22.6142 21.7427 21.6420 21.8433
M=5000 22.0345 21.8945 22.145 21.8000 21.7546 21.8454
M=8000 21.8100 21.7509 21.8778 21.8000 21.77746 21.8401
M=10000 21.8270 21.8080 21.7830 21.8270 21.7950 21.8390

1For more details about the RF implementation on MATLAB fitrensemble visit: https://fr.mathworks.com/help/

stats/fitrensemble.html

https://fr.mathworks.com/help/stats/fitrensemble.html
https://fr.mathworks.com/help/stats/fitrensemble.html
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Figure 5: Numerical convergence of the RF hybrid algorithm. Confidence level is 95% (the estimated
value of the American option in blue, upper bound in red and lower bound in green). M from 100 to
1000 by 10 steps.
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Figure 6: Numerical convergence of the RF hybrid algorithm. Confidence level is 95% (the estimated
value of the American option in blue, upper bound in red and lower bound in green), M From 100 to
5000 by 10 steps.

The Central Limit theorem states that in case of paths are independent, the sum of the option price
on each path in the Monte Carlo approximation can be estimated by a normal distribution N (0, σ√

M
)

(unbiased Monte Carlo estimator). Hence, UM
0

σ/
√

M
∼N (0,1). In the same pattern of [21], we can propose

an estimator of the theoretical tolerance range with a confidence level according to its upper and lower
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bounds

Îmodel =
upperM

model− lowerM
model

2
= 1.96∗ σ√

M
.

For example, for M = 10000, Îlevy =
21.8678−21.7970

2 = 0.0354, which is a very small range of error. There-
fore, the option price theoretically belongs to [21.8678− 0.0354,21.7970+ 0.0354] with a confidence
level of 95%.

Table 2: Time consuming (MATLAB R2019a program/Processor: Intel(R) Core(TM) i7-8550U CPU @
1.80GHz (8 CPUs), 2.0GHz/Memory: 8192MB RAM.

number of sampling RF least square
100 to 1000 by 10 steps 400.2 s 40.544 s
100 to 5000 by 10 steps 11634.54 s 1163.004 s
100 to 10000 by 10 steps 64800s 7200 s

Now the question that arises is whether RF-RI or least squares is more effective in predicting Amer-
ican option prices in a real market context.

4.4 Example of an American put option on Microsoft stock

Table 3: The least square algorithm compared to RF regression on the MSFT put option traded on
19/03/2021 at price S0 = 231.02. Expired on 18/03/2021 at table prices, r = 4% from Yahoo Finance.

Strike Price Vol RF RF error LS LS error λ1 λ2

185 9.81 6.25% 5.4672 4.3428 5.2048 4.6052 5 1/8
210 17.8 1.56% 15.3825 2.4175 15.2053 2.5947 5 1/7
215 19.8 1.56% 19.4275 0.3725 19.3315 0.4685 5 1/7
220 21.95 0.78% 18.8531 3.0969 19.4438 2.5062 5 1/6
225 24.25 0.78% 23.2182 1.0318 23.5296 0.7204 5 1/6
230 26.6 0.05% 23.2814 3.3186 23.4150 3.185 5 1/5
255 41.48 0% 42.4939 1.0139 42.4125 0.9325 5 1/4
270 51.45 0% 47.6928 3.7572 47.3619 4.0881 5 1/2
275 55.2 0% 52.6691 2.5309 52.3785 2.8215 5 1/2
305 80.53 0% 79.6319 0.8981 81.2268 0.6968 5 1/1.5
355 126.68 0% 128.1305 1.4505 126.9668 0.2868 5 1/1.5

Mean error 2.202790909 Mean error 2.082336364

According to Table 3, we will compare the least squares regression and the RF hybrid algorithm by
considering an example of actual data. For this purpose, we extracted market information (r = 4%,
implied volatility) and stock information (the MSFT put option traded on 19/03/2021 at price S0 =
231.02$, expired on 18/03/2021) from Yahoo Finance. On the other hand, the parameters of the Levy
Jump-diffusion are calibrated as shown in Table 3 (λ1 is the negative jump size approximated by the
weekly mean losses of Microsoft stock between 2020 and 2021 and λ2 approximated by the occurrence of
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the biggest losses which are higher than the half-price average in one year). Then, similarly to Subsection
4.1 we simulate the forward price of the underlying under Levy Jump-diffusion and the backward least
squares model as presented in Subsection 4.2, as well as the RF hybrid algorithm simulated as explained
in Subsection 4.3. Hence, we compare the predicted price for each model to the price of the put options
quoted in the market.

As we notice in Table 3, for all strikes, the RF option price is quite similar to the least squares option
price but slightly higher in terms of the final mean error which equals MERF−MELS

max(MERF ,MELS)
= 5% (absolute

variation in terms of mean error). Indeed, in this specific example, the least squares algorithm predicts
slightly better than the RF regression by using the calibration of parameters, as shown in Table 3. The
Gauss-Markov theory states that in a linear model in which the errors have zero expectations, uncorre-
lated and whose variances are equal. Then, the least squares estimator is the best and most unbiased
linear estimator of the coefficients. This theorem in addition to the previous assumptions explain our
results in the context of linear projection in L2 space. It is commonly believed that the least squares algo-
rithm is a convenient benchmark widely used by practitioners to value American options under normal
market conditions (no big crash, without a high-multidimensional and correlated portfolios). However,
our results show (for this specific example) that the RF regression is close to the efficiency of this bench-
mark estimator with a 5% gap. Furthermore, RF generally performs better in the context of nonlinear
and highly-correlated multidimensional models due to its randomized tree structure. As a result, we are
motivated to extend our application to nonlinear estimations of the continuation value in a future study
e.g., multi-factor systematic risk and multidimensional underlying.

Remark 2. The use of the improved Levy Jump-diffusion model with hybrid jumps (loss and profit jumps),
like Kou’s model [17] (i.e. jumps follow a generalized Laplace non-symmetric law) can slightly improve
our results.

5 Conclusion

In this paper, we have presented a new approach for pricing the American option under the exponential
Levy Jump-diffusion model. We also compared our RF hybrid algorithm to the classical Longstaff and
Schwartz algorithm with the least squares regression as a benchmark in terms of time and numerical
stability of its convergence according to the number of simulated trajectories. We have also proposed a
numerical method to emphasize the numerical stability of the proposed hybrid RF algorithm by estimat-
ing the theoretical confidence interval according to the confidence level in Section 4.3. Furthermore, we
noted that by varying the number of paths, we numerically highlight the equilibrium option price. Note
that in our algorithm, the trees are built independently and can therefore be built in parallel. this is a huge
advantage for modern computing methods such as parallelization on GPU/Graphics Clusters, henceforth,
we can get better exercise policies without paying for execution. More calibrations can perform better
with the exponential Levy Jump-diffusion model as it has been done in the context of S&P100 European
options in [25]. Recent studies on machine learning and parallelism methods for solving Deep BSDEs
open new horizons for pricing American option as in [4] or [19].
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