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Abstract. A fractional Bagley-Torvik equation of variable coefficients with Robin boundary conditions
is considered in this paper. We prove the existence of the solution which is demonstrated by convert-
ing the boundary value problem into a Volterra integral equation of the second kind and also prove the
uniqueness of the solution by using the minimum principle. We propose a numerical method that com-
bines the second order spline approximation for the Caputo derivative and the central difference scheme
for the second order derivative term. Meanwhile, the Robin boundary conditions is approximated by
three-point endpoint formula. It is to be proved that this method is of second order convergent. Numeri-
cal examples are provided to demonstrate the accuracy and efficiency of the method.
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1 Introduction

Fractional order differential equations (FDEs) have been used to explain problems mostly in the fields
of fluid mechanics [1, 5], science and engineering [9, 10, 12]. Fractional order boundary value problems
appear in the modeling of several physical phenomena in stochastic transport, diffusion wave, control
theory, and the oil industry [4, 8]. The Bagley-Torvik equation is used to simulate the motion of a rigid
plate submerged in a Newtonian fluid.

Many people have investigated the existence and uniqueness of the solution to FDE. Wei et al. [6,13]
have discussed the uniqueness of solution for fractional Bagley-Torvik equations with variable coeffi-
cients.
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The Bagley-Torvik equation has been solved using a number of methods that combine analytical and
numerical approaches. Zahra et.al. [14] proposed cubic spline method for Bagley- Torvik equation. Zahra
and Elkholy have used quadratic spline approximation to solve boundary value problem of fractional
order [15]. Mustafa Gulsu et.al [5] applied Taylor matrix method for solving fractional Bagley-Torvik
equation in fluid dynamics. Saha and Bera [11] developed an analytical method to solve the Bagley-
Torvik equation using the Adomian decomposition method. Taylor series expansion method of Bagley-
Torvik equation with variable coefficients is studied by Huang et al [6].

Many authours have solved Bagley-Torvik equation with constant coefficients using various numer-
ical methods. In this work we have concentrated on solving Bagley-Torvik equation with variable coef-
ficients and Robin boundary conditions. The main goal of this study is to solve Robin boundary value
problems of the Begley-Torvik equation with variable coefficients using the second order linear spline
method. A spline method is used to approximate the Caputo fractional derivative of order δ , where
0 < δ < 1, and the Robin boundary conditions is approximated by three-point endpoint formula. Accu-
racy of the method is demonstrated through numerical experiments. Convergence analysis and stability
of the method are discussed.

The paper is organized as follows: Statement of the continuous problem is presented in Section
2. The existence and uniqueness of the solution to the problem are established and also the minimum
principle is derived in Section 3. The discretization of the continuous problem is completely explained
in Section 4. Convergence analysis is discussed in Section 5. The computational results are presented
in Section 6 which demonstrate the second-order accuracy of the numerical method and in Section 7,
conclusions are provided. Notations:

• Throughout the paper, C is a positive constant that is independent of N.
• The maximum norm is defined by ||u||Ω = max

x∈Ω

|u(x)|.

• Cn(Ω) denotes the space of n times continuously differentiable functions defined on Ω = (0,1).

2 Continuous problem

Consider the following fractional Bagley-Torvik Robin boundary value problem of variable coefficients
with the Caputo derivative as

L u(x) = u′′(x)+b(x)CDδ u(x)− c(x)u(x) = g(x), x ∈Ω = (0,1),
B0u(0) = α0u(0)−β0u′(0) = A0,

B1u(1) = α1u(1)+β1u′(1) = A1,

(1)

where A0, A1 are constants and b(x), c(x) and the source term g(x) are sufficiently smooth functions on
Ω = [0,1] with the assumptions{

b(x)< 0, c(x)> 0, ∀x ∈Ω ,

∀x ∈Ω , α0, α1 > 0, α0−β0 > 0, β0, β1 ≥ 0.
(2)

The Caputo fractional derivative of order δ , is defined by

CDδ u(x) =
1

Γ(1−δ )

x∫
0

(x− t)−δ u′(s) ds, 0 < δ < 1.
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Under the assumptions (2), the problem (1) will admit a unique solution in Ω .

3 Analytical results

In this section, we prove the existence of the solution of the fractional boundary value problem (1). Also,
we present the minimum principle which will be used to prove the uniqueness of the solution.

Theorem 1 (Existence of solution). Consider problem (1) with b(x), c(x) and g(x) ∈C(Ω). A function
u(x) ∈C2(Ω) is a solution, if and only if, v(x) satisfies the equation

v(x) = Hv(x)+ p(x), (3)

where

Hv(x) =−b(x)
[

I(2−δ )v(x)− α0M2M3

M1

]
+ c(x)

[
I2v(x)−M2

M1
(β0 +α0x)

]
,

p(x) = g(x)−b(x)
M3

M1
(α0A1−α1A0)+

c(x)
M1

[
A0(α1 +β1−α1x)+A1(β0 +α0x)

]
,

and Iδ is the Riemann-Liouville fractional integral operator of order δ ∈ R+, defined by

Iδ f (x) :=
1

Γ(δ )

x∫
0

(x− t)δ−1 f (t) dt.

Proof. Let u(x) be a solution of (1). Consider the new function

v(x) := u′′(x). (4)

Then by integrating both sides of (4), we obtain

u(x) = I2v(x)+ k1 + k2x, (5)

where k1, k2 are constants. By applying the boundary conditions of the problem (1), we find that

α0k1−β0k2 =A0, (6)

α1k1 +(α1 +β1)k2 =A1−α1I2v(1)−β1Iv(1). (7)

By solving these two equations (6) and (7), we have

k1 =
β0(A1−M2)+A0(α1 +β1)

M1
,

k2 =
α0(A1−M2)−α1A0

M1
,

(8)

where

M1 = α1β0 +α0(α1 +β1), M2 = α1I2v(1)+β1Iv(1), M3 =
x(1−δ )

Γ(2−δ )
.
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Substitution of k1 and k2 back into (5) gives

u(x) = I2v(x)+
(A1−M2)

M1
(β0 +α0x)+

A0

M1
(α1 +β1−α1x). (9)

Hence, by inserting (9) into (1), we finally write the form

v(x) = Hv(x)+ p(x). (10)

Conversely, let v(x) be a solution of (3). Define a function u(x) in the form (9) which satisfies the
fractional Bagley-Torvik equation (1).

Theorem 2 (Minimum principle). Consider L to be the differential operator defined in (1) and ϕ be
any function satisfying B0ϕ(0), B1ϕ(1)≥ 0 and L ϕ(x)≤ 0 for x ∈Ω . Then ϕ(x)≥ 0, ∀x ∈Ω .

Proof. The proof is by contradiction. Let x∗ be such that ϕ(x∗) = min
x∈Ω

ϕ(x) with ϕ(x∗)< 0.

Case(i): x∗ = 0, we have B0ϕ(x∗) = α0ϕ(x∗)−β0ϕ(x∗)< 0, a contradiction.
Case(ii): x∗ = 1, we have B1ϕ(x∗) = α1ϕ(x∗)−β1ϕ(x∗)< 0, a contradiction.
Case(iii): x∗ ∈Ω . Then, by Theorem 1 of [7], we have

L ϕ(x∗) = ϕ
′′(x∗)+b(x∗)CDδ

ϕ(x∗)− c(x∗)ϕ(x∗)> 0,

a contradiction. Hence the theorem is proved.

Theorem 3 (Uniqueness of solution). Suppose the hypothesis of Theorem 1 is satisfied. Then, problem
(1) has at most a single solution.

Proof. Let u1(x) and u2(x) be two solutions of (1). Then, z := u1(x)−u2(x) satisfies the homogeneous
equation

L z(x) = 0, x ∈Ω , B0z(0) = 0, B1z(1) = 0.

By Theorem 2, we get z(x) = 0. This shows that u1(x) = u2(x) and problem (1) has at most single
solution.

4 Numerical scheme

In this section, we derive the numerical scheme for problem (1) by using linear spline to approximate
the Caputo fractional derivative and central difference scheme for second order derivative term and the
three-point formula for the Robin boundary conditions.

4.1 Discretization of the Continuous problem

Let N be a positive integer. The uniform mesh is discretized by dividing the domain Ω into N subinter-
vals, defined by the mesh points xi = ih, i = 0(1)N and the mesh width is h = 1/N.

Now, we derive the numerical approximation to the fractional derivative of the problem (1). Consider
the Caputo derivative

CDδ u(xi) =
1

Γ(1−δ )

xi∫
0

(xi−ζ )−δ u′(ζ ) dζ , i = 1(1)N−1. (11)
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The linear spline Πi(ζ ),whose nodes and knots are named at xk, k = 0(1)i, is of the form

Πi(ζ ) =
i

∑
k=0

du
dζ

(xk)Πi,k(ζ ), (12)

where Πi,k(ζ ) , in each interval xk−1 ≤ ζ ≤ xk+1, for k = 1(1)i−1, given by

Πi,k(ζ ) =


ζ − xk−1

xk− xk−1
, for xk−1 ≤ ζ ≤ xk,

xk+1−ζ

xk+1− xk
, for xk ≤ ζ ≤ xk+1,

0, otherwise.

For k = 0 and k = i, we have

Πi,0(ζ ) =


x1−ζ

x1− x0
, for x0 ≤ ζ ≤ x1,

0 otherwise,

Πi,i(ζ ) =


ζ − xi−1

xi− xi−1
, for xi−1 ≤ ζ ≤ xi,

0, otherwise.

From (11) and after some calculations, we have

1
Γ(1−δ )

xi∫
0

Πi(ζ )(xi−ζ )−δ dζ =
1

Γ(1−δ )

i

∑
k=0

du
dζ

(xk)

xi∫
0

(xi−ζ )−δ
Πi,k(ζ )dζ

=
h1−δ

Γ(3−δ )

i

∑
k=0

du
dζ

(xk)wi,k,

(13)

where

wi,k =


(i−1)2−δ − i1−δ (i−2+δ ), k = 0,
(i− k+1)2−δ −2(i− k)2−δ +(i− k−1)2−δ , 1≤ k ≤ i−1,
1, k = i.

(14)

Remark 1. The coefficients wi,k implies that
i

∑
k=0

wi,k = (2−δ )i1−δ .

The first order derivative of (13) can be approximated by left side finite difference as

du(x0)

dx
=
−3U0 +4U1−U2

2h
, k = 0.

For k = 1(1)N−1, the central difference approximation of the first order derivative of (13) is

du(xk)

dx
=

Uk+1−Uk−1

2h
.
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Finally, the approximation of CDδ (xi) can be rewritten as

CDδ
S :=

h−δ

2Γ(3−δ )

{
wi,1(−3U0 +4U1−U2)+

i

∑
k=1

wi,k(Uk+1−Uk−1)

}
. (15)

The first derivatives in the Robin boundary conditions are approximated by the three-point endpoint
formula [2] as follows:

du(0)
dx

=
1
2h

(−3U0 +4U1−U2),

du(1)
dx

=
1
2h

(3UN−4UN−1 +UN−2).

Hence, the discretization of (1) is: Find {Ui}N
i=0 such that


L NUi = δ 2Ui +bC

i Dδ
SUi− ciUi = gi, i = 1(1)N−1,

B0U0 = α0U0−
β0

2h
(−3U0 +4U1−U2) = A0,

B1UN = α1UN +
β1

2h
(3UN−4UN−1−UN−2) = A1,

(16)

where bi := b(xi) and similarly for ci and fi, and δ 2Ui = (Ui+1−2Ui +ui−1)/h2.

4.2 Matrix representation of the numerical scheme

We can write the discrete problem (16) in the matrix form as follows

[θ1K +µB(M+Q)+P+θ2V ]U = G, (17)

where θ1 = 1/h2, θ2 = 1/2h, µ = h−δ/Γ(3−δ ), G = (A0,g1, . . . ,gN−1,A1)
T , U = (U0,U1, . . . ,UN) and

the matrices K, B, M, Q, P and V are given below

K =



0 0 0 0 . . . 0 0 0
1 −2 1 0 . . . 0 0 0
0 1 −2 1 . . . 0 0 0

. . . . . . . . .
0 0 0 . . . 1 −2 1 0
0 0 0 . . . 0 1 −2 1
0 0 0 . . . 0 0 0 0


, B =



0
b1

b2
. . .

bN−1
0


,
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M =



0 0 0 0 . . . 0
−3w1,0 4w1,0 −w1,0 0 . . . 0
−3w2,0 4w2,0 −w2,0 0 . . . 0

...
...

...
...

. . .
...

−3wN−2,0 4wN−2,0 −wN−2,0 0 . . . 0
−3wN−1,0 4wN−1,0 −wN−1,0 0 . . . 0

0 0 0 0 . . . 0


,

Q =



0 0 0 . . . 0 0 0
q10 q11 q12 . . . q1,N−2 q1,N−1 q1,N
q20 q21 q22 . . . q2,N−2 q2,N−1 q2,N

...
...

...
. . .

...
...

...
qN−2,0 qN−2,1 qN−2,2 . . . qN−2,N−2 qN−2,N−1 qN−2,N
qN−1,0 qN−1,1 qN−1,2 . . . qN−1,N−2 qN−1,N−1 qN−1,N

0 0 0 . . . 0 0 0


,

where

qi,0 =−wi,1, for i = 1(1)N−1 ; q1,1 = 0 ; qi,1 =−wi,2, for i = 2(1)N−1 ;

qi,i = wi,i−1, for i = 2(1)N−1 ; qi,i+1 = wi,i, for i = 1(1)N−1 ;

qi,k = wi,k+1−wi,k−1, for i = 3(1)N−1, k = 2(1)i−1,

qi,k = 0, i = 1(1)N−1, k = i+2, i+3, . . . ,N,

and

P =



α0
c1

c2
. . .

cN−1
α1


, V =


3β0 −4β0 β0 0 . . . 0
0 0 0 0 . . . 0
...

...
...

...
. . .

...
0 0 0 0 . . . 0
0 0 0 β1 −4β1 3β1

 .

5 Convergence analysis

In this section, we investigate the truncation error bound and the convergence of the proposed method.

Theorem 4. Suppose u(x) ∈C3(Ω) and 0 < δ < 1, and the discrete operator Λδ is defined by

Λδ u(xi) =
1

Γ(3−δ )

(
wi,0Λ0u(x0)+

i

∑
k=1

wi,kΛ
2u(xk)

)
, (18)

where Λ0u(x0) =−3u(x0)+4u(x1)−u(x2) and Λ 2u(xk) = u(xk+1)−u(xk−1). Then

1
hδ

Λδ u(xi) =
C Dδ u(xi)+η1(xi)+η2(xi),
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with

max
0≤xi≤1

|ηr(xi)| ≤
x1−δ

i
Γ(2−δ )

O(h2), r = 1,2.

Proof. From (18),

1
hδ

Λδ u(xi) =
h−δ

Γ(3−δ )

(
wi,0Λ0u(x0)+

i

∑
k=1

wi,kΛ
2u(xk)

)
.

Using the Taylor expansion [2] we have

1
2h

Λ0u(x0) =
du
dx

(x0)+O(h2);
1
2h

Λ 2u(xk) =
du
dx

(xk)+O(h2).

Hence

1
hδ

Λδ u(xi) =
h1−δ

Γ(3−δ )

i

∑
k=0

wi,k

(
du
dx

(xk)+O(h2)

)
=

h1−δ

Γ(3−δ )

i

∑
k=0

wi,k
du
dx

(xk)+η1(xi),

with

η1(xi) =
h1−δ

Γ(3−δ )

i

∑
k=0

wi,kO(h2) =
x1−δ

i
Γ(2−δ )

O(h2),

from Remark 1. Now,

1
hδ

Λδ u(xi) =
1

Γ(1−δ )

xi∫
0

(xi−ζ )−δ
Πi(ζ )dζ +η1(xi)

=
1

Γ(1−δ )

xi∫
0

(xi−ζ )−δ du
dx

(ζ )dζ +η2(xi)+η1(xi),

and hence

η2(xi) =
1

Γ(1−δ )

∣∣∣∣∣
xi∫

0

(
Πi(ζ )−

du
dx

(ζ )

)
(xi−ζ )−δ dζ

∣∣∣∣∣
≤ 1

Γ(1−δ )
max

ζ∈[0,1]

∣∣∣∣du
dx

(ζ )−Πi(ζ )

∣∣∣∣ xi∫
0

(xi−ζ )−δ dζ .

Then under the continuity of
d3u
dx3 (ζ ), we have from [2]

du
dx

(ζ ) = Πi(ζ )+O(h2),

and

η2(xi)≤
x1−δ

i
Γ(2−δ )

O(h2),

which completes the proof.
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5.1 Truncation error bound

Theorem 5. The truncation error of the numerical scheme (16) is of O(h2).

Proof. Let u(xi) be the solution of (1) and U(xi) be the solution of the discrete problem (16) on the mesh
points xi, i = 0(1)N. The truncation error is defined as ϒ := (ϒ0,ϒ1, . . . ,ϒN), where ϒ = u(xi)−U(xi)
and the ϒi’s can be written as

ϒ0 : = β0

(
u′(x0)−

−3U0 +4U1−U2

2h

)
,

ϒi : =
(

u′(xi)−δ
2U(xi)

)
+b(xi)

(
CDδ u(xi)− CDδ

SU(xi)

)
, i = 1(1)N−1,

ϒN : = β1

(
u′(xN)−

3UN−2−4UN−1 +UN

2h

)
.

Now, we prove the bounds for the error function ϒ .

• Case i = 0: For the left Robin boundary conditions, we have [2]

du
dx

(x0) =
−3U0 +4U1−U2

2h
+O(h2).

Therefore, |ϒ0| ≤Ch2.

• Case i = N: Similarly as in Case i = 0, we have ϒN ≤Ch2.

• Case i = 1(1)N−1: Using Theorem 4 and the truncation error the second order derivative can be
approximated by the central difference scheme and it can be written as ϒi ≤Ch2, i = 1(1)N−1.

5.2 Error estimate

In order to derive an error bound of the scheme, we need the following lemmas.

Lemma 1. [15] If A is a square matrix of order N and ||A||∞ < 1, then (I +A)−1 exists and

||(I +A)−1||∞ <
1

1−||A||∞
.

Note: Using binomial expansion, we can prove

(1− x)y ≤ 1− xy, for x,y ∈ [0,1]. (19)

Lemma 2. The entries wi,0, i = 1(1)N−1 of the matrix M are decreasing.
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Proof. Let
Y (x) = (x−1)2−δ − x1−δ (x−2+δ ), ∀x≥ 1. (20)

Next, we show that Y ′(x)< 0. Differentiating the function Y (x) with respect to x, we have

Y ′(x) = (2−δ )(1−δ )x−δ

(
1− x1−δ − (x−1)1−δ

(1−δ )x−δ

)
.

Take f (x) =
x1−δ − (x−1)1−δ

(1−δ )x−δ
. Then,

f (x) =
x

1−δ

(
1−
(

1− 1
x

)1−δ)
> 1,

where by using (19) for
1
x
∈ (0,1] and 0 < 1−δ < 1. Hence, Y ′(x)< 0. Therefore Y (x) is a decreasing

function.

Our main purpose now is to calculate a bound for ||E||. Let Ei = u(xi)−U(xi), i = 0(1)N. We can
write the error term in the following form

E =
(
I +θ1P−1K +µP−1B(M+Q)+θ2P−1V

)−1P−1
ϒ , (21)

where E = (E0,E1, . . . ,EN)
T .

Lemma 3. The matrix [θ1K +µB(M+Q)+P+θ2V ] is regular, provided that

max
{

1
α0

,
1

α1
, ||c−1||

}(
4θ1 +µ||b||∞ (8(1−δ )+ ||Q||∞)+θ2||V ||∞

)
< 1. (22)

Proof. Let
H = θ1P−1K +µP−1B(M+Q)+θ2P−1V. (23)

From the matrix P, we have

P is regular and ||P−1||∞ ≤max
{

1
α0

,
1

α1
, ||c−1||

}
.

Now,
||K||∞ ≤ 4, ||B||∞ ≤ ||b||, ||V ||∞ ≤ 8max{β0,β1}. (24)

Then using Lemma 2, we get
||M||∞ ≤ 8||w||= 8(1−δ ), (25)

where ||w||= max{wi,0, i = 1(1)N−1}. We have,

||Q||∞ = max
1≤i≤N−1

i+1

∑
k=0

qi,k. (26)
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Substituting (24-26) into (23) and using our assumption (22), we obtain

||H|| ≤ 1.

Then using Lemma 1, (I +θ1P−1K +µP−1B(M+Q)+θ2P−1V ) exists

||(I +θ1P−1K +µP−1B(M+Q)+θ2P−1V )−1||

≤ 1
1−max

{ 1
α0
, 1

α1
, ||c−1||

}(
4θ1 +µ||b||∞ (8(1−δ )+ ||Q||∞)+θ2||V ||∞

) .

Theorem 6. If u(x) is the solution of the continuous problem (1) and U(xi) is the numerical solution of
the problem (16), then we have

||E|| ∼= O(h2).

Proof. From equation (21), we can write

||E||= ||
(
I +θ1P−1K +µP−1B(M+Q)+θ2P−1V

)−1||∞ · ||P−1||∞ · ||ϒ ||

≤ ||P−1||∞||ϒ ||
1−||P−1||∞(θ1||K||∞ +µ||B||∞(||M||∞ + ||Q||∞)+θ2||V ||∞)

≤
max

{ 1
α0
, 1

α1
, ||c−1||

}
||ϒ ||

1−max
{ 1

α0
, 1

α1
, ||c−1||

}(
4θ1 +µ||b||∞ (8(1−δ )+ ||Q||∞)+θ2||V ||∞

) ,
by using Lemma 3. Applying Theorem 5, we have ||E|| ∼= O(h2). which is the desired result.

6 Computational results

In this section, we solved two fractional Bagley-Torvik boundary value problems to illustrate our numer-
ical method which demonstrate its order of convergence.

Example 1. Consider the fractional Bagley-Torvik boundary value problem:
u′′(x)− (1− x2) CDδ u(x)− (1+ sin2πx)u(x) = g(x), x ∈Ω ,

2u(0)−u′(0) = A0,

u(1)+u′(1) = A1,

where the function g(x) and the constants A0, A1 are chosen such that the exact solution ue(x) is

ue(x) = xδ+3− xδ+4 +2.

The maximum absolute error and the corresponding rate of convergence are given as below

DN
δ
= max

0≤i≤N
|ue(xi)−U(xi)| and pN

δ
= log2

(
DN

δ

D2N
δ

)
.
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Also, the uniform errors and the corresponding rate of convergence for various values of δ are calculated
by

DN = max
δ

DN
δ

and pN = log2

(
DN

D2N

)
.

The exact and approximate solutions are exhibited in Figure 1 for the case of n = 27 and δ = 0.3. The
maximum error and order of convergence for various value of δ ∈ {0.1,0.2, . . . ,0.9} are represented in
Table 1. From the error plot shown in Figure 2, the maximum errors reduces as N increases. The loglog
plot of the maximum error of the numerical solution Ui is given in Figure 3.

Table 1: Computed maximum errors and uniform errors DN
δ
,DN and orders of convergence pN

δ
, pN of

Example 1 for the values of δ and N.

δ/N 32 64 128 256 512 1024 2048 4096
0.1 3.740e-03 9.463e-04 2.375e-04 5.937e-05 1.481e-05 3.693e-06 9.205e-07 2.295e-07

1.982 1.994 2.000 2.002 2.003 2.004 2.004 -
0.2 3.945e-03 9.967e-04 2.498e-04 6.238e-05 1.555e-05 3.876e-06 9.660e-07 2.407e-07

1.984 1.996 2.001 2.003 2.004 2.004 2.004 -
0.3 4.162e-03 1.051e-03 2.637e-04 6.589e-05 1.644e-05 4.100e-06 1.022e-06 2.551e-07

1.984 1.995 2.000 2.002 2.003 2.003 2.003 -
0.4 4.391e-03 1.111e-03 2.788e-04 6.975e-05 1.742e-05 4.349e-06 1.086e-06 2.712e-07

1.982 1.994 1.999 2.001 2.001 2.001 2.001 -
0.5 4.628e-03 1.173e-03 2.949e-04 7.384e-05 1.846e-05 4.614e-06 1.152e-06 2.880e-07

1.980 1.992 1.997 1.999 2.000 2.000 2.000 -
0.6 4.872e-03 1.237e-03 3.115e-04 7.811e-05 1.954e-05 4.887e-06 1.221e-06 3.054e-07

1.977 1.989 1.996 1.998 1.999 2.000 2.000 -
0.7 5.123e-03 1.304e-03 3.287e-04 8.249e-05 2.065e-05 5.1672e-06 1.2920e-06 3.2304e-07

1.973 1.988 1.994 1.997 1.999 1.999 1.999 -
0.8 5.379e-03 1.372e-03 3.463e-04 8.698e-05 2.179e-05 5.452e-06 1.363e-06 3.408e-07

1.971 1.986 1.993 1.997 1.998 1.999 1.999 -
0.9 5.643e-03 1.442e-03 3.645e-04 9.160e-05 2.295e-05 5.745e-06 1.436e-06 3.593e-07

1.967 1.984 1.992 1.996 1.998 1.999 1.999 -
DN 5.643e-03 1.442e-03 3.645e-04 9.160e-05 2.295e-05 5.745e-06 1.436e-06 3.593e-07
pN 1.967 1.984 1.992 1.996 1.998 1.999 1.999 -

Example 2. Consider the fractional Bagley-Torvik boundary value problem:
u′′(x)− (1+ x) CDδ u(x)− (16x0.7 +1) = x, x ∈Ω ,

2u(0)−u′(0) = 0,
3u(1)+u′(1) = 1.

The exact solution of this problem is not known. Therefore, we use the double- mesh principle [3] to
determine the maximum errors and the order of convergence. Let UN , U2N be the numerical solutions
with N and 2N mesh points. Then the two mesh differences is defined as

EN
δ
= max

0≤i≤N
|UN

i −U2N
i |, and EN = max

δ

EN
δ
.
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Figure 1: Exact and numerical solutions of Example 1 for N = 27 and δ = 0.3.
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Figure 2: Error plot of Example 1.
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Figure 3: Loglog plot of Example 1.

Further, we determine the order of convergence as

qN
δ
= log2

(
EN

δ

E2N
δ

)
and qN = log2

(
EN

E2N

)
.

The graph of the numerical solution is shown in Figure 4 for different values of δ ∈ {0.1,0.5,0.9}
and n = 27. The maximum errors and rate of convergence for the values δ ∈ {0.1,0.2, . . . ,0.9} are
demonstrated in Table 2, which prove this proposed method is of second order convergence, as well as
from the error plot and loglog plot displayed in Figures 5 and 6, respectively.

7 Conclusions

Approximate solution for a class of fractional Bagley-Torvik equations of variable coefficients with
Robin boundary conditions are found through our proposed numerical method comprised of linear spline
and three-point endpoint formula. It is proved that our numerical method is of second order convergent.
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Figure 4: Numerical solutions of Example 2 for N = 27 and δ ∈ {0.1,0.5,0.9}.

Table 2: Computed maximum errors and uniform errors EN
δ
,EN and orders of convergence qN

δ
, qN of

Example 2 for the values of δ and N.

δ/N 32 64 128 256 512 1024 2048 4096
0.1 5.044e-04 1.339e-04 3.457e-05 8.795e-06 2.220e-06 5.588e-07 1.404e-07 3.528e-08

1.912 1.953 1.975 1.985 1.990 1.992 1.993 -
0.2 5.096e-04 1.354e-04 3.497e-05 8.899e-06 2.247e-06 5.656e-07 1.4218e-07 3.572e-08

1.911 1.953 1.974 1.985 1.990 1.992 1.993 -
0.3 5.159e-04 1.372e-04 3.545e-05 9.023e-06 2.279e-06 5.739e-07 1.443e-07 3.628e-08

1.910 1.952 1.974 1.985 1.989 1.991 1.992 -
0.4 5.235e-04 1.394e-04 3.603e-05 9.174e-06 2.318e-06 5.840e-07 1.469e-07 3.697e-08

1.909 1.951 1.973 1.984 1.989 1.990 1.991 -
0.5 5.329e-04 1.420e-04 3.673e-05 9.358e-06 2.366e-06 5.965e-07 1.502e-07 3.789e-08

1.907 1.950 1.972 1.983 1.988 1.989 1.989 -
0.6 5.445e-04 1.452e-04 3.760e-05 9.583e-06 2.425e-06 6.123e-07 1.545e-07 3.912e-08

1.906 1.949 1.972 1.982 1.986 1.985 1.986 -
0.7 5.593e-04 1.493e-04 3.868e-05 9.866e-06 2.499e-06 6.321e-07 1.601e-07 4.078e-08

1.904 1.949 1.971 1.980 1.983 1.986 1.986 -
0.8 5.787e-04 1.547e-04 4.010e-05 1.023e-05 2.593e-06 6.570e-07 1.671e-07 4.289e-08

1.903 1.948 1.970 1.979 1.980 1.975 1.980 -
0.9 6.053e-04 1.621e-04 4.204e-05 1.072e-05 2.717e-06 6.882e-07 1.751e-07 4.506e-08

1.900 1.947 1.970 1.980 1.981 1.984 1.986 -
EN 6.053e-04 1.621e-04 4.204e-05 1.072e-05 2.717e-06 6.882e-07 1.751e-07 4.506e-08
qN 1.900 1.947 1.970 1.980 1.981 1.984 1.986 -

Error estimates and convergence analysis are given. Computational results of two examples were pre-
sented by means of graphs and tables which validates our theoretical results.
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Figure 5: Error plot of Example 2
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Figure 6: Loglog plot of Example 2
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