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Abstract. DES, or drug-eluting stents, have the advantage of reducing restenosis rates relative to
bare-metal stents. Modeling and simulation can be used to improve device performance. In this study,
a general mathematical model for releasing a hydrophobic drug from a drug-eluting stent, DES, with a
biostable coating is modeled. Most mathematical models allow the drug in the polymer to be released
freely. This is suitable when the initial concentration of the drug in the polymer is less than the solubility,
in which case the dissolution of the drug can be considered instantaneously. On the other hand, matrix
devices can be loaded above solubility to provide zero-order release. to this end, we have equipped a
model with a function that determines how the dissolution processes change with the dispersed phase
discharge. The general model is analyzed with some limitations, and it is reduced to a new model that
is consistent with previous studies. We examine the effects of initial drug loading and dissolution rate
constant in numerically solving one of the new models, which is novel in DESs.

Keywords: Mathematical model, drug eluting stent, biostable polymer, dissolution, diffusion.
AMS Subject Classification 2010: 34A34, 65L05.

1 Introduction

Novel drug delivery systems, also known as Controlled drug delivery systems, will be able to control
and determine the rate, time, and place of drug release. Generally, these devices fall into two categories:
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matrix devices and membrane controlled devices (or reservoir systems) [17]. One of the ways to de-
liver drugs is to use drug-eluting stents (DESs). Unlike classical metal stents, polymer-coated stents
show high plasticity and facilitate the placement of prostheses at the implantation site. The polymeric
coating is, therefore, a suitable matrix for the controlled immobilization and release of antiproliferative
drugs. Polymer layers on the stent surface have the following roles: (1) inhibiting the drug from being
washed off from the stent surface, (2) providing a suitable scaffold for drug loading, (3) providing an
engineered control over the drug release, and (4) providing a satisfactory platform for biocompatibility.
A drug-eluting stent is less likely to re-block arteries, so it helps eliminate the need to repeat angioplasty
procedures, which carry complications like heart attacks and strokes [29, 37]. Slowly releasing the drug,
interrupts the smooth muscle cell cycle and thus their proliferation. As a result, restenosis can be sig-
nificantly reduced [8]. Mathematical modeling can be used to analyze complex systems quantitatively.
Indeed, a mathematical model may be regarded as a language that narrates hypotheses and talks about the
implications of those hypotheses. In the early years, the drug release mechanism was poorly understood,
but mathematical modeling and experiments have helped researchers identify the dominant mechanisms
for drug release in a variety of stents. Mathematics models have the advantage that they permit param-
eter variation and comparison of release profiles without the need to repeat the experiments once they
have been verified. An important benefit of mathematical modeling is its ability to identify the important
variables that govern drug release. Additionally, modeling can be useful to understand how drugs are dis-
tributed within arterial tissue [6, 20]. Zunino conducted the first mathematical study of drug stents [38]
that was too simplistic to predict drug distribution on arterial walls. So far, Several computer simula-
tions and modeling studies have been conducted on drug-eluting stents. A bunch models are presented
on polymer coatings according to physical properties, geometry design [13, 27], chemical properties of
drug [2,35], stent coating such as non-erodible polymer [16], biodegradable and erodible coatings [5,31]
in one, two and three dimensions [8, 9, 15, 16, 20]. Modeling the release of drugs from arterial stents is
only one part of the story. Simulation of drug distribution in arterial walls is another aspect of modeling.
Models involving advection-diffusionreaction equation [10] and drug binding in arterial tissue using lin-
ear and non-linear reaction terms [25,26] are developed. The convective and diffusive transports of drug
in the arterial wall [34] has been assessed for both hydrophilic and hydrophobic drugs. A stent and arte-
rial wall are, of course, a coupled system (or stents and arterial walls are, of course, a coupled system).
Thus, to accurately represent the in vivo situation, we must take into account the interaction between the
stent and the tissue. McGinty et al. [20, 21] presented one of the first stent/tissue models that accounted
for convection, diffusion, and uptake into SMCs within porous media. The drug release profile is one of
the most important aspects of the performance of DESs. Due to the expense and time associated with in
vivo experiments, stent manufacturers routinely test the release of drugs from their stents in an in vitro
environment [21]. Matrix devices, such as polymer coating stents, can be loaded above their solubility
to cover zero-order release. Two distinct physical processes occur in this case: diffusion of the dissolved
drugs and dispersion of the dispersed molecules. In this case, some researches in 2D or 3D considering
some special limitations have only been presented theoretically, such as high dissolution rate [37] and in
other studies, release governed by a diffusion-dissolution equation involving a linear first-order reaction
in biostable polymer has been considered or a non-linear dissolution term based on a reformulation of the
empirical Noyes-Whitney equation for polymers which included surface erosion with finite dissolution
rate has been discussed [11, 22].

In light of all the above, the present research aims to develop a general mathematical model for
biostable stent coatings loaded with hydrophobic drugs which are equipped with a suitable function to
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determine how the dissolution process changes by depleting the dispersed phase. As stated in [19,30,37],
here we address drug distribution in the arterial wall with reversible binding.

The outline of this paper is described as follows. In Section 2 we introduce the general model that we
introduced above, and in Section 3, we discuss some limitations of the model. We simulated one of the
reduced models from a general model that has been never simulated before and because of the nonlinear
equations and complicated geometry, a numerical method is presented to solve problems in Section 4
and at the end, results are discussed and the impact of a few parameters is investigated and conclusions
are drawn.

2 Mathematical model

In this section, a drug delivery system is considered that takes form a stent with a non-swelling and
biostable coating that delivers a hydrophobic drug. Drug transport by diffusion has been identified as
the dominant mechanism in the coating and arterial wall and, convective drug transport is not considered
in the wall [3]. The concentration of drug dissolved in the coating of the stent and the arterial wall is
denoted by Cp and Cw, respectively. Since the initial concentration of a drug may be greater than the
solubility of a drug, the excess of a drug must be dissolved before diffuse into the arterial wall. So
dissolution process is modeled based on Noyes-Whitney as

∂C
∂ t
∼ (Cs−C)Γ(Cu), (1)

so that Γ(Cu) determines how the dissolution processes change as the dispersed phase. Here the undis-
solved drug in coating is denoted by Cu, that Cu =CL−Cs, where CL is the initial loading of drug and Cs

is the solubility of drug. If there is no solid drug, then Cu = 0 and Γ(Cu) = 0. Note that it is clear that
supΓ(Cu) = 1 [17]. According to the above, the governing equations of diffusion-dissolution process in
coating can be presented as

∂Cp

∂ t
= Dp52

X Cp + kds(Cs−Cp)Γ(Cu), X ∈Ωc, (2)

∂Cu

∂ t
= −kds(Cs−Cp)Γ(Cu), X ∈Ωc, (3)

where Dp is the coating drug diffusivity and kds is the dissolution rate constant, Ωc represent the area of
polymer coating.

On the other hand, the free drug that transports from the polymer coating into the arterial wall has
been modeled with reversible binding that is described as a first-order reversible reaction Cw +S0⇐⇒ B
with association (binding) and dissociation (unbinding) reaction rates ka and kd , respectively:

∂Cw

∂ t
= Dw52

X Cw− ka(S0−B)Cw + kdB, X ∈Ωw, (4)

∂B
∂ t

= ka(S0−B)Cw− kdB, X ∈Ωw, (5)

where Ωw specifies the area of arterial wall and Dw is drug diffusivity. Here, S0 is the local density of
the binding site, and Cw is the free drug that reacting into bound drug B. Although we shall not update a
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new model for the distribution of drugs in the arterial wall here, we include a model as stated in [19, 30,
37], with reversible binding for completeness. Note that for hydrophobic drugs such as Sirolimus and
Paclitaxel, the velocity vector for tissue domain is set zero and neglected drug flux at the lumenvascular
wall and the lumencoating interfaces is justified.

Also zero flux in coatingstrut interface is considered [35, 37]. If the polymer coating is a reservoir
device, then

C = αCs, (6)

in coatingstrut interface, where α is the membrane/reservoir partition coefficients and Cs is the concen-
tration of the saturated reservoir of drug [17].

In the arterial wall, due to symmetry boundary conditions, we have zero flux to the interfaces rightleft
wall boundaries [37]. At the interfaces of perivascular-arterial wall, the flux is represented as following

Jpw =
1

Rpw
(

Cw

kpw
−Cpv), (7)

where Rpw is the mass transfer resistance, Cw is the concentration of drug on the arteriall wall of interface,
kpw is the partition coefficient and Cpv is the concentration of drug on perivascular that is assumed zero
[14, 37]. And finally, continuous flux condition at the wall-coating interface is [35]

Cp = kcwCw, (8)

f lux |Ωw= f lux |Ωc . (9)

It is assumed that the drug loaded uniformly and the initial conditions are given by

Cp(X ,0) =Cs, Cu(X ,0) =CL−Cs, (10)

Cw(X ,0) = 0, B(X ,0) = 0. (11)

2.1 Non-dimensionalisation

The general governing equations may be nondimensionalized by taking

Ci =
Ci

Cs
, i = p,w, B =

B
s0
, Cu =

Cu

Cs
, (12)

X =
X
δ

(X) ∈Ωc, X =
X
Lxi

X = (x1, ..,xn) ∈Ωc, n = 1,2,3, (13)

where δ is the polymer coating thickness and Lxi is the arterial wall length with Γ(Cu) = Γ(Cu).
Now by dropping the overbars, the dimensionless governing equations may be written as fallows

∂Cp

∂ t1
= 52

XC+ kc(1−Cp)Γ(Cu), X ∈Ωc,

∂Cu

∂ t1
= −kc(1−Cp)Γ(Cu), X ∈Ωc,

∂Cw

∂ t2
= ∇((A11, .,Aii) ·∇Cw)−A2(1−B)Cw +A3B, i = 2,3 X ∈Ωw, (14)

∂B
∂ t3

= A4(1−B)Cw−B, X ∈Ωw, (15)
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where

kc = kds
α2

Dp
, A11 = 1, Aii =

4Dw(i)L2
x1

Dw(1)L2
xi

, A2 =
L2

x1
s0ka

Dw(1)
, A3 =

S0kd

C0
,

A4 =
A2

A3
, t1 =

Dp

δ 2 t, t2 =
Dw(1)

L2
x1

t, t3 =
1
kd

t.

In this paper, we have presented a general model of drug release from a biostable polymer coating. In
the following section, some limitations based on physical or chemical processes are considered whereby
the governing equations are analyzed.

3 Analysis of general model

In general, the equations are in one, two, or three-dimensional. To simplify the analysis, we continue
studies with a cross-sectional model of a coronary artery that a stent with eight struts is implanted it and
each strut is in square form as Fig. 1 [1,5]. So in the following, the equations are presented and discussed

a

b c

Figure 1: (a) Drug-eluting stent components [1]. (b) Cross-sectional view of an implanted stent in a
coronary artery [5]. (c) Schematic of a single strut section that considered as a rectangular arterial wall
domain due to small thickness of the coronary artery wall compared to the diameter of the lumen.

in two dimensional.
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3.1 Governing equations and boundary conditions in low drug loading

Consider that drug loading is equal or less than the solubility drug, i.e, Cu = 0 and Γ(0) = 0. Therefore,
the governing equations are

∂Cp

∂ t1
=

∂ 2Cp

∂x2 +
∂ 2Cp

∂y2 , (x,y) ∈Ωc, (16)

∂Cw

∂ t2
=

∂ 2Cw

∂x2 +A22
∂ 2Cw

∂y2 −A2(1−B)Cw +A3B, (x,y) ∈Ωw, (17)

∂B
∂ t3

= A4(1−B)Cw−B, (x,y) ∈Ωw, (18)

that refers to mathematical modeling in [37] with referencing boundary conditions.

3.2 Governing equations and boundary conditions in high drug loading

Here we consider that the initial loading of drug is higher than the solubility and the rate of dissolution is
large. Also, drug disappears due to diffusion, or interconversion is quickly replaced by drug coming into
solution [17, 21]. So the coating may divide up to two distinct regions Ω1 and Ω2 which is separated by
a moving boundary s(t) = (s1,s2) that s1 and s2 are the moving boundary in x and y, respectively. The
equation in coating changes to a moving boundary problem as following

∂Cu

∂ t
= 0, Cp(X) = constant, (x,y) ∈Ω1,

∂Cp

∂ t
=

∂ 2Cp

∂x2 +
∂ 2Cp

∂y2 , Cu = 0, (x,y) ∈Ω2,

∂Cw

∂ t2
=

∂ 2Cw

∂x2 +A22
∂ 2Cw

∂y2 −A2(1−B)Cw +A3B, (x,y) ∈Ωw,

∂B
∂ t3

= A4(1−B)Cw−B, (x,y) ∈Ωw.

In this case at s(t) the Stephan conditions are as follow

C(s+(t), t) =Cs, −D
∂Cp

∂x
=

∂ s1

∂ t
, −D

∂Cp

∂y
=

∂ s2

∂ t
, (19)

and at t = 0 the s(t) is located at coating-wall interface. All the remind boundary conditions is as said as
general model in Section 2

On the other hand, if the rate of dissolution is finite, then dissolution-diffusion equations in the
coating are as follows

∂Cp

∂ t1
=

∂ 2Cp

∂x2 +
∂ 2Cp

∂y2 + kc(1−Cp)Γ(Cu), (x,y) ∈Ωc,

∂Cu

∂ t1
= −kc(1−Cp)Γ(Cu), (x,y) ∈Ωc,
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with coupled two equations in arterial wall (14)-(15). The initial conditions are as follows,

Cp(0,x,y) = 1, (x,y) ∈ Ωc, (20)

Cu(0,x,y) =
CL

Cs
−1, (x,y) ∈ Ωc, (21)

Cw(0,x,y) = 0, (x,y) ∈ Ωw, (22)

and the boundary conditions are as mentioned previously in Section 2.

4 Numerical simulation

In this section, we aim to simulate the governing model in limitations with high drug loading and finite
dissolution rate. Note that a simple dissolution function would be introduced by a step function that is
applicable to saturated- reservoir system. To this end, for the duration of application, if Cu > 0 then
Γ(Cu) = 1 and if there is no dispersed drug, then Γ(Cu) = 0. Here we considered a matrix device with
the above limitation that Γ(Cu) is adopted with a convenient smoothed approximation to a step function
that is

Γ(Cu) = tanhCu. (23)

So in special case, high drug loading and finite dissolution rate, the following equations are derived,
free drug in the polymer coating

∂Cp

∂ t
= Dp1

∂ 2Cp

∂x2 +Dp2
∂ 2Cp

∂y2 +Kdc(1−Cp) tanhCu, x,y ∈Ωp (24)

∂Cu

∂ t
=−Kdc(1−Cp) tanh(Cu), x,y ∈Ωp, (25)

and free and bound drug in the arterial wall

∂Cw

∂ t
= Dw1

∂ 2Cw

∂x2 +Dw2
∂ 2Cw

∂y2 − ka(S0−B)Cw + kdB, x,y ∈Ωw, (26)

∂B
∂ t

= ka(S0−B)Cw− kdB, (x,y) ∈Ωw. (27)

with the boundary and initial conditions stated in Section 2.
The model with fixed boundary is simulated with an explicit finite volume method that is outlined

by [24]. To this end, let ∆x and ∆y be the special steps, i, j be indices for x,y coordinates, ∆t denotes the
time step and n be the time index. To illustrate how the numerical scheme was developed, let us start by
integrating (24) over the control volume of size ∆x and ∆y centred at (x,y), as follows:

∫ y+∆y/2

y−∆y/2

∫ x+∆x/2

x−∆x/2

∂Cp

∂ t
dxdy = Jx|(x−∆x/2,y)∆y− Jx|(x+∆x/2,y)∆y + Jy|(y−∆y/2,x)∆x

−Jy|(y+∆y/2,x)∆x +
∫ y+∆y/2

y−∆y/2

∫ x+∆x/2

x−∆x/2
kdc(1−Cp) tanh(Cu)dxdy,
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where Jx and Jy are influx/out flux in their directions. In the following, by using forward-difference
approximation for the time derivative, we get

C̃n+1
pi, j −C̃n

pi, j

∆t
=

1
∆x

(Jx|ni− ∆x
2 , j
− Jx|ni+ ∆x

2 , j
)+

1
∆y

(Jy|ni, j− ∆y
2
− Jy|ni, j+ ∆y

2
)+ kc(Cs− (C̃n

pi, j))(Γ̃(Cn
ui, j)), (28)

where

Jx|ni+ ∆x
2 , j

=−Dp1
C̃n

pi+∆x , j −C̃n
pi, j

∆x
, (29)

and C̃p and ˜Γ(CU) are the average values of CP and Γ(CU) on cell centroid (i, j) respectively. For
example, the C̃p is calculated by

C̃pi, j =
1

∆x∆y

∫ i+ ∆x
2 , j

i− ∆x
2 , j

∫ i, j+ ∆y
2

i, j− ∆y
2

CP dxdy.

After spatial discretization, the discretized equations are solved numerically. The computational code
has been successfully programmed using MATLAB R2018a on a personal computer.

4.1 Convergence and stability

In this section, the convergence and stability conditions of the numerical method on the polymer coating
system is investigated, and due to the similarity and repetition of the proof on the arterial wall and
because of the length the proof, we establish the convergence and stability just for (24)-(25), although
the convergence and stability for arterial wall have been discussed on [37] .

Theorem 1. Let Cp and Cu be the exact solution of (24)-(25) which have continuous derivatives ∂ 2Cp
∂ t2 ,

∂ 4Cp
∂x4 , ∂ 4Cp

∂y4 , ∂ 2Cu
∂ t2 in Ωp× [0,T ], if (Dp1(

∆t
∆2

x
)+Dp2(

∆t
∆2

y
))≤ 1

2
, then the approximate solution converges to

the exact solution as ∆t → 0, ∆x→ 0 and ∆y→ 0

Proof. Denote the exact solution of the equation (28) by Cp and the approximate solution by cp. Then
e = cp−Cp. At the mesh points, let

Ck
pi, j − ek

i, j =Ck
pi, j . (30)

Without loss of generality, we assume that ∆x = ∆y = h. Since α +β ≤ 1
2

, rearranging the terms of (28)
and taking magnitudes of both sides leads to

|ek+1
i, j | ≤ (1−2α−2β )|ek+1

i, j |+α|ek+1
i, j |+α|ek+1

i, j |+β |ek+1
i, j |+β |ek+1

i, j |+M|ek+1
i, j |∆t +ET ∆t , (31)

where α = D1
∆t
h2 , β = D2

∆t
h2 , M is the maximum magnitude of ( f (Cp)Γ(Cu))

′
and ET is the maximum of

local truncation error which may be obtained by the Taylor’s series expansion as follows

EK
T i, j = (∆t/2)

∂ 2Cp(xi,y j, t̃)
∂ t2 − (∆2

x/12)D1
∂ 4Cp(x̃,y j, tk)

∂x4 − (∆2
y/12)D2

∂ 4Cp(xi, ỹ, tk)
∂y4 . (32)

So there are M1, M2 and M3 so that

|EK
T i, j | ≤M1∆t +M2∆

2 +M3∆
2
y ≡ ET . (33)
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Let Ek be the maximum value of |ek(i, j)| for 1≤ i≤ n−1 and 1≤ j ≤ m−1. The (31) becomes

Ek ≤ (1+M∆t)
kE0 +[1+(1+M∆t)+ · · ·+(1+M∆t)

k−1]ET ∆t . (34)

Since k∆t ≤ T , the above scheme becomes

Ek ≤ (1+M∆t)
T/∆t −1

M
ET ≤

exp(MT )−1
M

ET , (35)

when ∆x , ∆y and ∆t tends to zero, ET → 0 and this proves that cp converges to Cp.

To investigate the stability of the approximate solution of nonlinear differential equations (24)-(27),
we use matrix method. To this end, the equation (28) is represented in matrix form. If (n− 1) are the
number of grid points in X-direction and (m− 1) the number of points in Y -direction,we can write the
solution vector as follows
−→
ck

p = [ck
p1 ,ck

p2 ,ck
p3 , . . . ,ck

p(n−1)(m−1)]
T ≡ [ck

p1,1 ,ck
p1,2 ,ck

p1,3 , . . . ,ck
p(n−1)(m−1) ,ck

p2,1 ,ck
p2,2 ,ck

p2,3 , . . . ,ck
p(n−1)(m−1) , . . .

. . . ,ck
pn−1,1 ,ck

pn−1,2 ,ck
pn−1,3 , . . . ,ck

p(n−1)(m−1) ]
T (36)

and like −→cp , we have
−→
ck

u = [ck
u1 ,ck

u2 ,ck
u3 , . . . ,ck

u(n−1)(m−1) ]
T . Therefore, Eq. (28) is expressed in the matrix

form as
−−→
ck+1

p = A
−→
ck

p +∆t diag
{

f (ck
p1)Γ(ck

u1), f (ck
p2)Γ(ck

u3), . . . , f (ck
p(n−1)(m−1))Γ(ck

u(n−1)(m−1))
}

(37)

where

A =


γ1 β In−1 0 · · · 0 0

β In−1 γ2 β In−1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 . . . γm−2 β In−1
0 0 0 . . . β In−1 γm−1


((n−1)×(m−1))2

.

Note that γρ , ρ = 1, . . . ,m−1, are tridiagonal matrix that are symmetric and may be different from each
other in areas adjacent to the boundary according to boundary conditions. For example for some ck

pi we
have

γρ =



1−2α−2β α 0 ... 0 0
α 1−2α−2β α ... 0 0
...

...
...

. . .
...

...

0 0 0
... 1−2α−2β α

0 0 0
... α 1−2α−2β


(n−1)2

,

and there is some rows that γρ is as

γρ =



1−α−β α 0 · · · 0 0
α 1−2α−β α · · · 0 0
...

...
...

. . .
...

...

0 0 0
... 1−2α−β α

0 0 0
... α 1−α−β


(n−1)2

,
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and using forward-difference approximation for the time derivative in (25) the following matrix form is
derived

−−→
ck+1

u = I
−→
ck

u +∆t diag
{
− f (ck

p1)Γ(ck
u1),− f (ck

p2)Γ(ck
u3), ....,− f (ck

p(n−1)(m−1))Γ(ck
u(n−1)(m−1)

}
. (38)

Theorem 2. The system (28) with continuous derivatives of f (CP) and Γ(Cu) is stable if

Dp1(
∆t

∆2
x
)+Dp2(

∆t

∆2
y
)≤ 1

2
.

Proof. By the mean value theorem and (36), the following difference operator may be obtained
−−→
ck+1

p = A
−→
ck

p +∆t diag
{

f ′(ck
p1)Γ(ck

u1), f ′(ck
p2)Γ(ck

u3), . . . , f ′(ck
p(n−1)(m−1))Γ(ck

u(n−1)(m−1)

}−→
ck

p ,

−−→
ck+1

u = I
−→
ck

u +∆t diag
{
− f (ck

p1)Γ
′(ck

u1),− f (ck
p2)Γ

′(ck
u3), . . . ,− f (ck

p(n−1)(m−1))Γ
′(ck

u(n−1)(m−1)

}−→
ck

u .

Let
−→
Uk = [

−→
ck

p ,
−→
ck

u ]. So, we have

−−→
Uk+1 = AU

−→
Uk +∆t diag

{
f ′(ck

p1)Γ(ck
u1), f ′(ck

p2)Γ(ck
u3), . . . , f ′(ck

p(n−1)(m−1))Γ(ck
u(n−1)(m−1) ,

− f (ck
p1)Γ

′(ck
u1),− f (ck

p2)Γ
′(ck

u3), . . . ,− f (ck
p(n−1)(m−1))Γ

′(ck
u(n−1)(m−1)

}−→
Uk

Or
−−→
Uk+1 = ÃU

−→
Uk, where

ÃU = AU +∆Ak

= AU +∆t diag
{

f ′(ck
p1)Γ(ck

u1), f ′(ck
p2)Γ(ck

u3), . . . , f ′(ck
p(n−1)(m−1))Γ(ck

u(n−1)(m−1) ,− f (ck
p1)Γ

′(ck
u1),

− f (ck
p2)Γ

′(ck
u3), . . . ,− f (ck

p(n−1)(m−1))Γ
′(ck

u(n−1)(m−1)

}
.

It is clear that ‖ AU ‖∞= 1 if (Dp1(
∆t
∆2

x
)+Dp2(

∆t
∆2

y
)) ≤ 1

2 that leads to ρ(AU) ≤ 1. On the other hand, as

mentioned in the previous theorem, ( f (cp)Γ(cu))
′ is bounded, and it is trivial to verify that ρ(∆Ap) ≤

∆tM. Hence, since AU and ∆Ap are symmetric, we deduce the inequality

ρ(ÃU) = ρ(AU +∆Ak)≤ ρ(AU)+ρ(∆Ak)≤ 1+M∆t . (39)

So the von Neumann necessary condition for stability is established. Since ÃU is a normal matrix and
positive number M is independent of h1, h2 and k, the von Neumann condition is sufficient as well as
necessary for the stability [18, 28, 32]. Note that for isotropic diffusion, when ∆x = ∆y = h, stability
condition is derived as D(∆t

h2 )≤ 1
4 .

5 Numerical experiments

For the proposed drug release system, first, we compare the figures from numerical computations in high
drug loading, C0 >Cs, with low drug loading, C0 =Cs, and following that, the drug loading and the drug
dissolution rate constant are investigated for their impact on the drug transport and distribution.

In order to study the diffusion of drug in the coating of strut and delivered drug to the arterial wall,
the data set which is indicated in Table 1 is used.
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Table 1: Simulated values of the model parameters.

Description Parameter Value Reference

Diameter of the strut λ 140µm [1, 37]
Strut coating thickness δ 50µm [23, 37]
Wall thickness δw 200µm [37]
Inter-strut distance zd 0.1cm [37]
Coating drug diffusivity Dp 0.1µm2s−1 [23]
Drug solubilization limit Cs 10−5M [6]
Free drug diffusion coefficient Dw 0.1−10µm2s−1 [37]
Association rate constant ka 10−2M−1s−1 [36]
Dissociation rate constant kd 0.01s−1 [37]
Dissolution rate constants kds 0.05s−1 [17]
Local density in binding site S0 10−5 M [37]
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Figure 2: Drug release profile in the stent coating by changing initial drug loading.
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Figure 3: Temporal variation for the spatial average of free and bound drug concentrations in the arterial
wall for the different initial drug concentration.
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5.1 Impact of high initial loading

As stated in previous studies [4, 22], there may be changes in the rate of release due to initial drug
loading. Fig. 2 represents the cumulative percentage of drug released in the stent coating at different CL

so that (CL/Cs) = 1,2,5,10. When the loading initial drug is equal solubility drug, CL/Cs = 1, so there
is no dispersed drug and tanhCu = 0. So the above model changes to equations (16)-(18) and its profile
is similar to the investigated in some works [37]. With increasing CL the profile is in agreement with
zero-order profile and the duration of release is prolonged. Fig. 3 plots spatially averaged free-drug and
bound-drug concentrations in the arterial wall for different CL. The simulation shows with increasing the
ratio of CL/C0 the average concentration of drug in the arterial wall reaches quasi-equilibrium values.
The top profile displays the temporal variation of spatially average concentration in CL/C0 = 10 and has
the most equilibrium.

As reported in previous studies, the lack of drug in upper layers far away from the strut in the
circumferential direction is potentially linked to the growth of more in-stent restenosis at larger interstrut
angle [5, 33]. Fig. 4 represent the impact of initial drug loading in free and bound drug concentration
at boundary points p1 and p2 which are shown in Fig. 1-(c). In low drug loading, Fig. 4-(a), low
quasi-equilibrium drug concentrations are observed at sites p1 and p2 while with increasing initial drug
loading, quasi-equilibrium levels are reached, Fig. 4-(c) and (d).
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Figure 4: Temporal variation of drug concentrations at points p1 and p2 after 400h in high drug loading,
where (a) CL

Cs
= 1, (b) CL

Cs
= 2, (c) CL

Cs
= 5 and (d) CL

Cs
= 10.

The arterial wall distribution of free and bound drug concentration can be visualized through Fig.
5. These figures show the impact of initial drug loading on the transport and distribution of drug in the
arterial wall.
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Figure 5: Drug distribution profiles for free and bound drug with different initial drug loading after 400h,
where (A) CL

Cs
= 1, (B) CL

Cs
= 2, (C) CL

Cs
= 5 and (D) CL

Cs
= 10.
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5.2 Impact of dissolution rate constant, kc

In this section, we investigate the effect of dissolution rate constant on the drug release in the stent coating
and the drug delivery into the arterial wall. Different values for kc are examined to look at its impact on
the drug delivery process.
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Figure 6: Drug release profiles in the stent coating at different dissolution rate constant, kc.
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Figure 7: Temporal variation for the spatial average of (a) free and (b) bound drug concentrations in the
arterial wall for different kds.

Fig. 6 represents with increasing kc, the release profile can be significantly accelerate as diffusion
becomes slower than dissolution kinetics. It is noteworthy that with increasing kc the profile remains
first-order. Fig. 7 represents the temporal variation for the spatial average of free and bound drug con-
centration in the arterial wall. while increasing kc leads to the increasing amount of distribution of drug,
but Varying kc has little effect on average bound and free drug concentration and does not significantly
affect the results. The concentrations at boundary points,P1 and P2, are shown in Fig. 8. As can be visual-
ized, there are no quasi-equilibrium levels while increasing kc and bound drug concentrations are higher
than the free drug concentration at p1. The spatial distribution of free and bound drug concentration can
be visualized in Fig. 9. These simulations indicate that increasing kc does not affect the non-uniform



A mathematical model to simulate the drug release pattern from drug-eluting stents 431

0 50 100 150 200 250 300 350 400

Time(hour)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
d
ru

g
 c

o
n
c
e
n
tr

a
ti
o
n

10-6

bound drug at p2

bound drug at p1

free drug at p2

free drug at p1

0 50 100 150 200 250 300 350 400

Time(hour)

0

0.5

1

1.5

2

2.5

d
ru

g
 c

o
n
c
e
n
tr

a
ti
o
n

10-6

bound drug at p2

bound drug at p1

free drug at p2

free drug at p1

0 50 100 150 200 250 300 350 400

Time(hour)

0

0.5

1

1.5

2

2.5

d
ru

g
 c

o
n
c
e
n
tr

a
ti
o
n

10-6

bound drug at p2

bound drug at p1

free drug at p2

free drug at p1

0 50 100 150 200 250 300 350 400

Time(hour)

0

0.5

1

1.5

2

2.5

d
ru

g
 c

o
n
c
e
n
tr

a
ti
o
n

10-6

bound drug at p2

bound drug at p1

free drug at p2

free drug at p1

Figure 8: Temporal variation of drug concentrations at points p1 and p2 after 400h in high drug loading,
where (a) kds = 0.05, (b) kds = 0.1, (c) kds = 0.25 and (d) kds = 0.5.

spatial distribution of drug in the arterial wall.

6 Conclusion

We have developed a mathematical model for Drug-eluting stents using a dissolution equation based on
the Noyes-Withney equation combined with a function that determines the effects of dispersed drugs on
dissolution processes. The model is innovative compared to the previous ones since it includes a term
that is absent in diffusion-dissolution equations prior to DESs with biostable polymers.

Initially, we have presented a mathematical model for the release of a hydrophobic drug from polymer
coatings and uptake by arterial walls. The presented general model has been converted to a simpler model
similar to those studied in previous studies under low drug loading and into a moving boundary problem
similar to those examined in the past under high drug loading and large dissolution rate limits. The
numerical simulation of the nonlinear equation has been formed when the initial drug loading was higher
than solubility with a finite dissolution rate.

According to simulation results, as the initial load increases, the duration of release is prolonged,
zero-order profile release is derived, and the distribution of drug in the arterial wall reaches quasi-
equilibrium values. While the quasi-equilibrium state was not observed in the limitation of the disso-
lution constant. In addition, the numerical results obtained in this numerical simulation are consistent
with those found in previous studies.
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Figure 9: Drug distribution profiles for free and bound drug at different dissolution rate constant, kc,
where (A) kc = 0.05, (B) kc = 0.1, (C) kc = 0.25 and (D) kc = 0.5.



A mathematical model to simulate the drug release pattern from drug-eluting stents 433

References

[1] S.R. Bailey, Theoretical advantages and disadvantages of stent strut materials, design, thickness
and surface characteristics, J. Interv. Cardiol. 22 (2009) S3–S17.

[2] B. Balakrishnan, A.R. Tzafriri, P. Seifert, A. Groothuis, C. Rogers, E.R. Edelman, Strut position,
blood flow, and drug deposition: implications for single and overlapping drug eluting stents, Cir-
culation 111 (2005) 2958-2965.

[3] B. Balakrishnan, J. Dooley, G. Kopia, E.R. Edelman, Thrombus causes fluctuations in arterial drug
delivery from intravascular stents, J. Control Release. 131 (2008) 173-180.

[4] F. Bozsak, D. Gonzalez-Rodriguez, Z. Sternberger, P. Belitz, T. Bewley, J.M. Chomaz, A.I. Barakat,
Optimization of drug delivery by drug-rluting stents, PLoS One 10 (2015) 1–29.

[5] R.D. Braatz, X. Zhu, Modeling and analysis of drug-eluting stents with biodegradable PLGA
coating: consequences on intravascular drug delivery, J. Biomech. Eng. 136 (2015), 111004-1–
111004-10.

[6] K. Chakravarty, D.C. Dalal, A two-phase model of drug release from microparticle with combined
effects of solubilisation and recrystallisation, Math Biosci. 272 (2016) 24-33 .

[7] K. Chakravarty, D.C. Dalal, A nonlinear mathematical model of drug delivery from polymeric ma-
trix, J. Math. Biol. 81 (2019) 105-130.

[8] P. Darvishi, S. M. Salehi, A three-dimensional mathematical model for drug delivery from drug-
eluting stents, IJCCE. 12 (2015) 15–27.

[9] M. C. Delfour, A. Garon, V. Longo, Modeling and design of coated stents to optimize the effect of
the dose, SIAM J. Appl. Math. 65 (2005) 858-881.

[10] F. De Monte, G. Pontrelli, S. Becker, Drug release in biological tissues, in: S.M. Becker, A.V.
Kuznetsov (Eds.), Transport in Biological Media, Elsevier Science BV, Amsterdam, 2013.

[11] L. Formaggia, S. Minisini, P. Zunino, Modeling polymeric controlled drug release and transport
phenomena in the arterial tissue, Math. Models Methods Appl. Sci . 20 (2010) 1759-1786.

[12] G. Frenning, Theoretical investigation of drug release from planar matrix systems: effects of a finite
dissolution rate, J. Control Release 92 (2003), 331-339.

[13] K. Gudnason, S. Sigurdssona, B. S. Snorradottirb, M. Massonb, F. Jonsdottira, A numerical frame-
work for drug transport in a multi-layer system with discontinuous interlayer condition, Math.
Biosci. 295 (2017) 11–23.

[14] C.W. Hwang, D. Wu, E.R. Edelman, Physiological transport forces govern drug distribution for
stent-based delivery, J. Circulation. 104 (2001) 600-605.

[15] D.R. Hose, A.J. Narracott, B. Griffiths, S. Mahmood, J. Gunn, D. Sweeney, A thermal analogy for
modelling drug elution from cardiovascular stents, Comput. Methods Biomech. Biomed. Engin. 7
(2004) 257-264.



434 H. Kamalgharibi, A.H. Borzabadi, O.S. Fard, A.S. Mofrad, M. Shafieian

[16] S. Hossainy, S. Prabhu, A mathematical model for predicting drug release from a biodurable drug-
eluting stent coating, J. Biomed Mater. Res. A. 87 (2008) 487-493.

[17] A.J. Lee, J.R. Kingt, S. Hibberd, Mathematical modelling of the release of drug from porous, non-
swelling transdermal drug-delivery devices, IMA J. Math. Appl. Med. Biol. 15 (1998) 135–163.

[18] N. Li, J. Steiner, S. Tang, Convergence and stability analysis of an explicit finite difference method
for 2-dimensional reactiondiffusion equations, J Aust. Math. Soc. Ser. B 36 (1994), 234-241.

[19] A.P. Mandal, P.K. Mandal, Computational Modelling of Three-phase Stent-based Delivery, JERP.
2 (2017) 31–40.

[20] S. McGinty, S. McKee, R.M. Wadsworth, C. McCormick, Modelling drug-eluting stents, Math.
Med. Biol. 28 (2011) 1-29.

[21] S. McGinty, A decade of modelling drug release from arterial stents, Math. Biosci. 257 (2014)
80–90.

[22] S. McGinty, S. McKee, Release mechanism and parameter estimation in drug-eluting stent systems:
analytical solutions of drug release and tissue transport, Math Med. Biol. Math. Med. Biol. 32
(2015) 163–86.

[23] R. Mongrain, I. Faik, R.L. Leask, J. Rodes-Cabau, E. Larose, Bertrand OF, Effects of diffusion
coefficients and struts apposition using numerical simulations for drug eluting coronary stents, J.
Biomech. Eng. 129 (2007) 733-742.

[24] F. Moukalled, L. Mangani, M. Darwish, The Finite Volume Method in Computational Fluid Dy-
namics, 817. Springer International Publishing Switzerland, 2016.

[25] G. Pontrelli, F. De Monte, Modeling of mass dynamics in arterial drug-eluting stents, J. Porous
Media. 12 (2009) 19-28.

[26] G. Pontrelli, F. De Monte, A multi-layer porous wall model for coronary drug eluting stents, Int. J.
Heat Mass Transf. 53 (2010) 3629-3637.

[27] P. Ravikumar, E. Bharathiraja, V. Tharani, R. Yamuna, T. Yamunarani, Design and analysis of
coronary stent, Int. J. Healthc. Manag. 12 (2011) 447-456.

[28] R. Richtmeyer, K.W. Morton, Difference Methods for Initial Value Problems, Wiley, New York,
1967.

[29] I. Rykowska, I. Nowak, R. Nowak, Drug-Eluting Stents and BalloonsMaterials, Structure Designs,
and Coating Techniques: A Review, Int. J. Mol. Sci. 25 (2020) 1-52.

[30] Sarifuddin, S. Roy, P.K. Mandal, Computational model of stent-based delivery from a half-
embedded two-layered coating, Comput Methods Biomech Biomed Engin. 23 (2020) 815–831.

[31] J. Siepmann, F. Siepmann, Mathematical modelling of drug delivery, Int. J. Pharm. 364 (2008)
328-343.



A mathematical model to simulate the drug release pattern from drug-eluting stents 435

[32] G.D. Smith, Numerical Solution of Partial Differential Equations: Finite Difference Methods (3rd
ed.), Clarendon Press; Oxford University Press, Oxford, New York (1985), p. 337.

[33] H. Takebayashi, G.S. Mintz, S.G. Carlier, Y. Kobayashi, K. Fujii, T. Yasuda, R. A. Costa, I. Moussa,
G. D. Dangas, R. Mehran, A.J. Lansky , E. Kreps, M.B. Collins, A. Colombo, G.W. Stone, M.B.
Leon, J.W. Moses, Nonuniform strut distribution correlates with more neointimal hyper plasia After
Sirolimus-Eluting Stent Implantation, J. Am. Heart Assoc. 110 (2004) 34303434.

[34] A.R. Tzafriri, A.D. Levin, E.R. Edelman, Diffusion-limited binding explains binary dose response
for local arterial and tumour drug delivery, J. Cell Prolif. 42 (2009) 348-363.

[35] A.R. Tzafriri, N. Vukmirovic, V.B. Kolachalama, I. Astafieva, E.R. Edelman, Lesion complexity
determines arterial drug distribution after local drug delivery, J. Control Release 142 (2010) 332-
338.

[36] A. Tzafriri, A. Groothuis, G.S. Price, E. Edelman , Stent elution rate determines drug deposition
and receptor-mediated effects, J. Control Release, 161 (2012) 918-926.

[37] X. Zhua, D.W. Pack, R. Braatz, Modelling intravascular delivery from drug-eluting stents with
biodurable coating: investigation of anisotropic vascular drug diffusivity and arterial drug distri-
bution, Computer Methods Biomech. Biomed. Engin. 17 (2014) 187–98.

[38] P. Zunino, Multidimensional pharmacokinetic models applied to the design of drug-eluting stents,
Cardiovasc. Eng. Int. J. 4 (2004) 181-191.


	1 Introduction
	2 Mathematical model
	2.1 Non-dimensionalisation

	3 Analysis of general model 
	3.1 Governing equations and boundary conditions in low drug loading
	3.2 Governing equations and boundary conditions in high drug loading

	4 Numerical simulation
	4.1 Convergence and stability

	5 Numerical experiments
	5.1 Impact of high initial loading
	5.2 Impact of dissolution rate constant, kc 

	6 Conclusion

