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Abstract. In this research, we investigate the fuzzy integral equations related to traffic flow. Using the
Banach fixed point theorem, we prove the existence and uniqueness of the solution for such equations.
Using the Picard iterative method, we obtain the upper bound for an accurate and approximate solution.
Finally, we obtain an error estimation between the exact solution and the solution of the iterative method.
Example shows the applicability of our results.
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1 Introduction

Integral and differential equations have many applications in science. Many modellings in different
sciences result in integral and differential equations. Traffic flow prediction is one of these applications
that many researchers have shown interest in studying in this field and have attempted to model traffic
flow (see [18, Page 216], [23, Page 389] and references therein ). A topic such as traffic flows is also
a topic of substantial research interest to a whole range of academics such as mathematicians, civil
engineers, geographers, ecologists and management scientists and has been modelled in a number of
ways utilising ideas from areas such as fluid flow, statistical physics and chaos theory [17, Page 115].

It is shown in [10, Page 79] that the integral equation

ρ(t) = f
(
t,u(t)

)∫ 1

0
v
(
t,s,u(s)

)
ds, (1)

occurs in traffic-related models.
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Recently, the authors in [7] have generalized Eq. (1) to

ρ(t) = g(t)+ f
(
t,u(t)

)∫ ∞

0
v
(
t,s,u(s)

)
ds, (2)

in crisp mode. Many researchers have studied the existence and uniqueness of the solution of the fuzzy
integral equations of Volterra and Fredholm type (see [11, Page 1], [24, Page 5], [2, Page 2], [1, Page 75]
and etc), but few of them have proved the existence and uniqueness of the solution of integral equations
of a particular type. The numerical methods for fuzzy integral equations involve various techniques. The
authors of this paper have previously used the method of successive approximations and other iterative
techniques to solve fuzzy integral equations ( [22, Page 6], [21, Page 1773]). In [7, Page 557] the
existence of at least one solution of integral Eq. (2) in classic logic is proved. Contrary to Crisp logic,
the fuzzy logic takes into account ambiguity as a part of system modelling. So, numerical solution of
fuzzy integral equations are more important than solving crisp integral equations [20, Page 13287].

In this paper we prove the existence and uniqueness of the solution for fuzzy integral equations such
as

ρ(t) = g(t)⊕ f
(
t,ρ(t)

)
� (FR)

∫ 1

0
v
(
t,s,ρ(s)

)
ds, t ∈ [0,1], (3)

under simpler conditions than in [7, Page 557], where ρ is an unknown fuzzy function and represents
the traffic density, g is the generation (or dissipation) rate in vehicle per unit time per length, f is crisp
function and v is traffic flow speed .

The structure of the paper is as follows. In Section 2, we introduce some fuzzy concepts. In Section
3, the existence and uniqueness of the solution of the fuzzy integral equations arising of traffic flow is
proved using the Banach fixed point theorem. Also, the error estimation between the exact solution and
the solution of the iterative method is obtained . Section 4 includes an example to check the accuracy of
the proposed method . Finally, in Section 5 we present our concluding remarks.

2 Some fuzzy concepts

Definition 1. (See [12, Page 619]). A fuzzy number is a function η : R→ [0, 1] having the properties:

(1) η is normal, that is ∃ x0 ∈ R such that η(x0) = 1,

(2) η is fuzzy convex set

(i.e. η(λx+(1−λ )y)≥min{η(x),η(y)} ∀x,y ∈ R,λ ∈ [0,1]),

(3) η is upper semi-continuous on R,

(4) the { x ∈ R : η(x)> 0} is compact set.

The set of all fuzzy numbers is denoted by Rz. An alternative definition which yields the same Rz is given
by [15, Page304].
.
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Definition 2. (See [13, Page 33]). An arbitrary fuzzy number is represented, in parametric form, by an
ordered pair of functions (u(r),u(r)),0≤ r ≤ 1, which satisfy the following requirements:

(1) u(r) is a bounded left continuous non-decreasing function over [0,1],

(2) u(r) is a bounded left continuous non-increasing function over [0,1],

(3) u(r)≤ u(r) , 0≤ r ≤ 1.

The addition and scaler multiplication of fuzzy numbers in Rz are defined as follows:

(4) (u⊕ v)(r) = (u(r)+ v(r),u(r)+ v(r)),

(5) (λ �u)(r) =


(λu(r),λu(r)) λ ≥ 0,

(λu(r),λu(r)) λ < 0.

(6) the product η�µ of fuzzy numbers η and µ , based on Zadeh’s extension principle, is defined by

(η�µ)(r) = min
{

η(r)µ(r),η(r)µ(r),η(r)µ(r),η(r)µ(r)
}

(η�µ)(r) = max
{

η(r)µ(r),η(r)µ(r),η(r)µ(r),η(r)µ(r)
}

Definition 3. (See [5, Page 126]). A fuzzy number u∈ Rz is said to be positive if u(1)≥ 0, strict positive
if u(1) > 0, negative if u(1) ≤ 0, strict negative if u(1) < 0. We say that u and v have the some sign if
they are both positive or both negative.

Definition 4. (See [6, Page 1102]). Let u =
(
u(r),u(r)

)
,v =

(
v(r),v(r)

)
∈ Rz be fuzzy numbers with

positive support (i.e., u(0)> 0,v(0)> 0). It is defined the product u�v=
(
u� v,u� v

)
∈C[0,1]×C[0,1]

by (u� v)(r) = u(r)v(r) and (u� v)(r) = u(r)v(r), ∀r ∈ [0,1]. The power of positive fuzzy number (with
positive support) is given as (u2)(r) =

(
(u(r))2,(u(r))2

)
.

Definition 5. (See [3, Page 64]). For arbitrary fuzzy numbers u = (u(r),u(r)) , v = (v(r),v(r)) the
quantity DF(u,v) = supr∈[0,1] max{|u(r)− v(r)| , |u(r)− v(r)|} is the distance between u and v. The
following properties are hold (See [3, Page 67]):

(1) (Rz,D) is a complete metric space,

(2) DF(u⊕w,v⊕w) = DF(u,v) ∀ u,v,w ∈ Rz,

(3) DF(k�u,k� v) = |k|DF(u,v) ∀ u,v ∈ Rz ∀ k ∈ R,

(4) DF(u⊕ v,w⊕ e)≤ DF(u,w)+DF(v,e) ∀ u,v,w,e ∈ Rz.

(5) DF(a�u,b�u)≤ |a−b|DF(u,0) ∀ u ∈ Rz; ∀a,b ∈ R, ab > 0,

Theorem 1. (1) The pair (Rz,⊕) is a commutative semigroup with 0̃ = χ0 zero element.
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(2) For fuzzy numbers which are not crisp, there is no opposite element ( that is, (Rz,⊕) cannot be a
group).

(3) For any a,b ∈ R with a,b≥ 0 or a,b≤ 0 and for any u ∈ Rz, we have (a+b)�u = a�u⊕b�u.
For arbitrary a,b ∈ R, this property is not fulfilled.

(4) For any λ ,µ ∈ R and u ∈ Rz, we have λ � (u⊕ v) = λ �u⊕λ �u.

(5) For any λ ∈ R and u,v ∈ Rz, we have λ � (µ�u) = (λ .µ)�u.

(6) The function ‖.‖z : Rz→ R by ‖u‖z = DF(u, 0̃) has the usual properties of the norm, that is,
‖u‖z = 0 if and only if u = 0̃, ‖λ �u‖z = |λ |‖u‖z and ‖u⊕ v‖z ≤ ‖u‖z+‖v‖z.

(7) |‖u‖z−‖v‖z| ≤ DF(u,v) and DF(u,v)≤ ‖u‖z+‖v‖z for any u,v ∈ Rz.

Proof. See [9, Page 1283], [4, Page 704].

Definition 6. (See [15, Page 306]). A fuzzy real number valued function f : [a,b]→ Rz is said to be
continuous in x0 ∈ [a,b], if for each ε > 0 there exists δ > 0 such that DF( f (x), f (x0)) < ε , whenever
x ∈ [a,b] and |x−x0|< δ . We say that f is fuzzy continuous on [a,b] if f is continuous at each x0 ∈ [a,b],
and denote the space of all such functions by Cz[a,b].

Definition 7. (See [9, Page 1281]). If X = { f : [a,b]→ Rz| f is continuous}, then X together with the
metric

D∗( f ,g) = sup
a≤s≤b

DF( f (s),g(s))

is complete metric space.

Lemma 1. (See [9, Page1283]). Let f1 and f2 are Riemann integrable functions. If the function given
by DF

(
f1(s), f2(s)

)
is Riemann integrable, then

DF

(
(FR)

∫ b

a
f1(s)ds,(FR)

∫ b

a
f2(s)ds

)
≤
∫ b

a
DF
(

f1(s), f2(s)
)
ds. (4)

Lemma 2. (See [20, Page13289]). For given α,η ,µ ∈R+
z, we have DF(α�η ,α�µ)≤‖α‖zDF(η ,µ)

Lemma 3. . Let f : [a,b]⊆ R→ Rz be a bounded and Riemann integrable function, then∥∥∥∥(FR)
∫ b

a
f (x)dx

∥∥∥∥
z
≤
∫ b

a
‖ f (x)‖z dx

Proof. By Theorem 1-(6), we have∥∥∥∥(FR)
∫ b

a
f (x)dx

∥∥∥∥
z

= DF
(
(FR)

∫ b

a
f (x)dx, 0̃

)
= DF

(
(FR)

∫ b

a
f (x)dx,(FR)

∫ b

a
0̃dx
)

≤
∫ b

a
DF
(

f (x), 0̃
)
dx =

∫ b

a
‖ f (x)‖zdx
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Lemma 4. (See [9, Page 1283]). If H ∈ C
(
[a,b]× [a,b]× Rz,E1

)
, g ∈ C

(
[a,b]× [a,b],Rz

)
and

a ∈C
(
[a,b],R+

)
then the functions a.g : [a,b]→ Rz and F : [a,b]→ Rz given by (a.g)(t) = a(t).g(t),

for all t ∈ [a,b] and F(t) = (FH)
∫ b

a H(t,s,u(s))ds are continuous.

Lemma 5. (See [8, Page 492]). If f : [a,b]→ C
(
[a,b],Rz

)
is continuous then it is bounded and its

supremum supt∈[a,b] f (t) must exist and is determined by u ∈C
(
[a,b],Rz

)
with ur

− = supt∈[a,b] f r
−(t) and

ur
+ = supt∈[a,b] f r

+(t). A similar conclusion for the infimum is also true.

3 Existence and uniqueness theorems

In order to prove the existence and uniqueness of the solution of Eq. (3), we assume that the following
conditions are holds:

(1) g ∈ C([a,b],Rz), f ∈ C([a,b] × Rz,Rz), f (t,ρ(t)) ≥ 0 and v ∈ C([a,b] × [a,b] × Rz,Rz),
∀t,s ∈ [a,b];

(2) There exists α,β ≥ 0 such that DF
(
v(t1,s,ρ1(s)),v(t2,s,ρ2(s))

)
≤ α|t1− t2|+βDF(ρ1(s),ρ2(s));

(3) There exists βM f + ηMH < 1 , where M f ,MH ≥ 0 are such that ‖ f (t,ρ(t))‖ ≤ M f , and
‖v(t,s,ρ(s))‖ ≤MH , ∀t,s ∈ [a,b] according to the continuity of f ;

(4) There exists γ ≥ 0, such that DF
(
g(t1),g(t2)

)
≤ γ|t1− t2| for all t1, t2 ∈ [a,b] ;

(5) There exists δ ≥ 0, such that DF
(

f (t1,ρ(t1)), f (t2,ρ(t2))
)
≤ δ |t1− t2| for all t1, t2 ∈ [a,b] ;

(6) There exists η ≥ 0, such that DF
(

f (t,ρ1(t)), f (t,ρ2(t))
)
≤ ηDF

(
ρ1(t),ρ2(t)

)
for all t ∈ [a,b].

Theorem 2. Under conditions (1)-(3), the integral Eq. (3) has a unique solution in C
(
[a,b],Rz

)
,

ρ∗ ∈C
(
[a,b],Rz

)
, and the sequence of successive approximations (ρm)m∈N ⊂C

(
[a,b],Rz

)
,

ρm(t) = g(t)⊕ f
(
t,ρm−1(t)

)
� (FR)

∫ 1

0
v
(
t,s,ρm−1(s)

)
ds, t ∈ [0,1],m ∈ N∗, (5)

converges to ρ∗ in C
(
[a,b],Rz

)
. In addition, the following error estimate hold:

D∗
(
ρ
∗,ρm

)
≤

(βM f +ηMH)
m

1− (βM f +ηMH)
D∗
(
ρ1,ρ0

)
, ∀t ∈ [0,1],m ∈ N∗, (6)

and by choosing ρ0 ∈C
(
[a,b],Rz

)
,ρ0 = g, the inequality (6) becomes

D∗
(
ρ
∗,ρm

)
≤

(βM f +ηMH)
m

1− (βM f +ηMH)
M0M f , ∀t ∈ [0,1],m ∈ N∗. (7)

where M0 ≥ 0 such that DF
(
v(t,s,ρ(s)), 0̃

)
≤M0 . Moreover, the sequence of successive approximations

(5) is uniformly bounded, that is, there exists a constant R≥ 0 such that DF
(
ρm(t), 0̃

)
≤ R, for all m∈N,

t ∈ [0,1], and the solution ρ∗ is bounded, too.
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Proof. In order to prove the theorem, we investigate the conditions of the Banach fixed point principle.
Let X = C

(
[0,1],Rz

)
= {h: [a,b] −→ Rz|h is continuous} be the space of fuzzy continuous functions

with the metric D∗(h1,h2) = supa≤t≤b DF
(
h1(t),h2(t)

)
. Now, we define the operator T : X −→ X as

follows

T (ρ(t)) = g(t)⊕ f (t,ρ(t))� (FR)
∫ 1

0
v
(
t,s,ρ(s)

)
ds.

Firstly, we demonstrate that T maps X into X (i.e. T (X)⊂ X). For this purpose we show that the operator
T is uniformly continuous.

Let arbitrary ρ ∈ X ,s0 ∈ [0,1] and ε > 0. Since ρ is continuous, for δ (ε) = ε

2α
> 0, it follows that

DF(ρ(s),ρ(s0))< ε

2β
for any s ∈ [0,1] with |s− s0|< δ (ε). Thus,

DF
(
v(t,s,ρ(s)),v(t,s0,ρ(s0))

)
≤ α|s− s0|+βDF(ρ(s),ρ(s0))≤ α

ε

2α
+β

ε

2β
= ε,

therefor the function v(t,s,ρ(s)) is continuous in s0. We infer that v is continuous on [0,1] for any
ρ ∈ C

(
[0,1],Rz

)
. Using Lemma 4 it follows that the function f (t,ρ(t))� (FR)

∫ 1
0 v(t,s,ρ(s))ds is

continuous on C
(
[0,1],Rz

)
for any ρ ∈C

(
[0,1],Rz

)
. we conclude that T (ρ) is continuous on [0,1] for

any ρ ∈C
(
[0,1],Rz

)
, and then T

(
C([0,1],Rz)

)
⊂C

(
[0,1],Rz

)
. Now, we show that the operator T is a

contraction. For arbitrary ρ1,ρ2 ∈C
(
[0,1],Rz

)
and t ∈ [0,1], we can write

DF

(
T (ρ1(t)),T (ρ2(t))

)
= DF

(
g(t)⊕ f (t,ρ1(t))� (FR)

∫ 1

0
v
(
t,s,ρ1(s)

)
ds,g(t)⊕ f (t,ρ2(t))� (FR)

∫ 1

0
v
(
t,s,ρ2(s)

)
ds
)

≤ DF

(
f (t,ρ1(t))� (FR)

∫ 1

0
v
(
t,s,ρ1(s)

)
ds, f (t,ρ2(t))� (FR)

∫ 1

0
v
(
t,s,ρ2(s)

)
ds
)

= DF

(
(FR)

∫ 1

0
f (t,ρ1(t))�v

(
t,s,ρ1(s)

)
ds,(FR)

∫ 1

0
f (t,ρ2(t))�v

(
t,s,ρ2(s)

)
ds
)

≤
∫ 1

0
DF

(
f (t,ρ1(t))�v

(
t,s,ρ1(s)

)
, f (t,ρ2(t))�v

(
t,s,ρ2(s)

))
ds

≤
∫ 1

0

(
DF
(

f (t,ρ1(t))�v
(
t,s,ρ1(s)

)
, f (t,ρ1(t))�v

(
t,s,ρ2(s)

)
+DF

(
f (t,ρ1(t))�v

(
t,s,ρ2(s)

)
, f (t,ρ2(t))� v

(
t,s,ρ2(s)

))
ds

≤
∫ 1

0

(
‖ f (t,ρ1(t))‖F DF

(
v(t,s,ρ1(s)),v(t,s,ρ2(s))

)
+
∥∥v
(
t,s,ρ2(s)

)∥∥
F DF

(
f (t,ρ1(t))

)
, f (t,ρ2(t))

)
ds

≤
∫ 1

0

(
M f βDF(ρ1(s),ρ2(s))+MHηDF(ρ1(t),ρ2(t))

)
ds

≤
∫ 1

0

(
M f βD∗(ρ1,ρ2)+MHηD∗(ρ1,ρ2)

)
ds = (βM f +ηMH)D∗(ρ1,ρ2)

for all t ∈ [0,1]. So

D∗
(
T (ρ1),T (ρ2)

)
≤ (βM f +ηMH)D∗(ρ1,ρ2), ∀ρ1,ρ1 ∈C

(
[0,1],Rz

)
.
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According to the condition (3), T is a contraction. by using of the Banach fixed point theorem, Eq. (3 )
has a unique solution ρ∗ ∈C

(
[0,1],Rz

)
.

Choosing ρ0 = g, we infer that v(t,s,ρ0) = v(t,s,g) is continuous since v ∈ C
(
[0,1]× [0,1]×

Rz
)
,Rz

)
and g∈C

(
[0,1],Rz

)
. Using Lemma 5, there are Mg,M0≥ 0 such that DF(ρ0(s), 0̃)=DF(g(s), 0̃)≤

Mg and

DF
(
v(t,s,ρ0(s)), 0̃

)
= DF

(
v(t,s,g(s)), 0̃

)
≤M0, ∀s ∈ [0,1].

So,

DF
(
ρ1(t),(ρ0(t)

)
= DF

(
g(t)⊕ f (t,ρ0(t))� (FR)

∫ 1

0
v
(
t,s,ρ0(s)

)
ds,g(t)+ 0̃

)
= DF

(
g(t)⊕ f (t,g(t))� (FR)

∫ 1

0
v
(
t,s,g(s)

)
ds,g(t)+ 0̃

)
≤ DF(g(t),g(t))+DF

(
f (t,g(t))� (FR)

∫ 1

0
v
(
t,s,g(s)

)
ds, 0̃

)
= DF

(
(FR)

∫ 1

0
f (t,g(t))�v

(
t,s,g(s)

)
ds,(FR)

∫ 1

0
f (t,g(t))� 0̃ds

)
≤
∫ 1

0
DF

(
f (t,g(t))�v

(
t,s,g(s)

)
, f (t,g(t))� 0̃

)
ds

≤
∫ 1

0
‖ f (t,ρ(t))‖F DF

(
v
(
t,s,g(s)

)
, 0̃
)
ds≤M0M f , ∀t ∈ [0,1],

D∗
(
ρ1,ρ0

)
≤ M0M f , ∀t ∈ [0,1]. (8)

For arbitrary t ∈ [0,1] and m ∈ N∗, we have

DF
(
ρm(t),ρm−1(t)

)
≤ DF

(
f (t,ρm−1(t))� (FR)

∫ 1

0
v
(
t,s,ρm−1(s)

)
ds,

f (t,ρm−2(t))� (FR)
∫ 1

0
v
(
t,s,ρm−2(s)

)
ds
)

= DF

(
(FR)

∫ 1

0
f (t,ρm−1(t))�v

(
t,s,ρm−1(s)

)
ds,

(FR)
∫ 1

0
f (t,ρm−2(t))�v

(
t,s,ρm−2(s)

)
ds
)

≤
∫ 1

0
DF

(
f (t,ρm−1(t))�v

(
t,s,ρm−1(s)

)
, f (t,ρm−2(t))�v

(
t,s,ρm−2(s)

))
ds

≤
∫ 1

0
DF

(
f (t,ρm−1(t))�v

(
t,s,ρm−1(s)

)
, f (t,ρm−2(t))�v

(
t,s,ρm−2(s)

))
ds

≤
∫ 1

0
DF

(
f (t,ρm−1(t))�v

(
t,s,ρm−1(s)

)
, f (t,ρm−1(t))�v

(
t,s,ρm−2(s)

))
ds

+
∫ 1

0
DF

(
f (t,ρm−1(t))�v

(
t,s,ρm−2(s)

)
, f (t,ρm−2(t))�v

(
t,s,ρm−2(s)

))
ds
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≤
∫ 1

0
‖ f (t,ρ(t))‖F DF

(
v
(
t,s,ρm−1(s)

)
,v
(
t,s,ρm−2(s)

))
ds

+
∫ 1

0

∥∥v
(
t,s,ρm−2(s)

)∥∥
F DF

(
f (t,ρm−1(t)), f (t,ρm−2(t))

)
ds

≤
∫ 1

0
βM f D∗

(
ρm−1,ρm−2

)
ds+

∫ 1

0
ηMHD∗

(
ρm−1,ρm−2

)
ds

≤ (βM f +ηMH)D∗
(
ρm−1,ρm−2

)
.

By induction it follows that

D∗
(
ρm,ρm−1

)
≤
(
βM f +ηMH

)m−1D∗
(
ρ1,ρ0

)
. (9)

Consequently,

DF
(
ρm(t),ρ0(t)

)
≤ DF

(
ρm−1(t),ρm−2(t)

)
+DF

(
ρm−2(t),ρm−3(t)

)
+ · · ·+DF

(
ρ1(t),ρ0(t)

)
≤
((

βM f +ηMH
)m−1

+
(
βM f +ηMH

)m−2
+ · · ·+1

)
D∗
(
ρ1,ρ0

)
≤

1−
(
βM f +ηMH

)m

1− (βM f +ηMH)
M0M f ≤

M0M f

1− (βM f +ηMH)
, ∀t ∈ [0,1],m ∈ N∗.

for any t ∈ [a,b] and for all m ∈ N, that is the uniformly boundedness of the sequence (ρm)m∈N in
C([a,b],Rz). For m ∈ N∗, we see that

DF
(
v(t,s,ρm(s)), 0̃

)
≤ DF

(
v(t,s,ρm(s)),v(t,s,ρ0(s))

)
+DF

(
H(t,s,ρ0(s)), 0̃

)
≤ βDF

(
ρm(s),ρ0(s)

)
+M0 ≤

βM0M f

1− (βM f +ηMH)
+M0, ∀s ∈ [0,1].

So, the sequence of functions am = v(t,s,ρm) is uniformly bounded in C([0,1],Rz).
Now, to prove Eq. (6), we can write

DF
(
ρ
∗(t),ρm−1(t)

)
≤ DF

(
f (t,ρ∗(t))� (FR)

∫ 1

0
v
(
t,s,ρ∗(s)

)
ds,

f (t,ρm−1(t))� (FR)
∫ 1

0
v
(
t,s,ρm−1(s)

)
ds
)

≤ DF

(
f (t,ρ∗(t))� (FR)

∫ 1

0
v
(
t,s,ρ∗(s)

)
ds,

f (t,ρ∗(t))� (FR)
∫ 1

0
v
(
t,s,ρm−1(s)

)
ds
)

+DF

(
f (t,ρ∗(t))� (FR)

∫ 1

0
v
(
t,s,ρm−1(s)

)
ds,

f (t,ρm−1(t))� (FR)
∫ 1

0
v
(
t,s,ρm−1(s)

)
ds
)

≤
∫ 1

0
DF

(
f (t,ρ∗(t))�v

(
t,s,ρ∗(s)

)
, f (t,ρ∗(t))�v

(
t,s,ρm−1(s)

))
ds

+
∫ 1

0
DF

(
f (t,ρ∗(t))�v

(
t,s,ρm−1(s)

)
, f (t,ρm−1(t))�v

(
t,s,ρm−1(s)

))
ds
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≤
∫ 1

0
‖ f (t,ρ∗(t))‖F DF

(
v(t,s,ρ∗(s)),v(t,s,ρm−1(s))

)
ds

+
∫ 1

0

∥∥v
(
t,s,ρm−1(s)

)∥∥
F DF

(
f (t,ρ∗(t)), f (t,ρm−1(t))

)
ds

≤
∫ 1

0
M f βD∗

(
ρ
∗,ρm−1

)
ds+

∫ 1

0
MHηD∗

(
ρ
∗,ρm−1

)
ds.

Thus

D∗
(
ρ
∗,ρm

)
≤ (βM f +ηMH)D∗

(
ρ
∗,ρm−1

)
. (10)

By using Defination 5, we have

D∗
(
ρ
∗,ρm−1

)
≤ D∗

(
ρ
∗,ρm

)
+D∗

(
ρm,ρm−1

)
. (11)

Combaning Eqs. (10) and (11) yields

D∗
(
ρ
∗,ρm

)
≤

(βM f +ηMH)

1− (βM f +ηMH)
D∗
(
ρm,ρm−1

)
. (12)

From Eqs. (9) and (12) we conclude that

D∗
(
ρ
∗,ρm

)
≤

(βM f +ηMH)
m

1− (βM f +ηMH)
D∗
(
ρ1,ρ0

)
. (13)

From Eqs. (8) and (13), relation (7) is obtained.
On the other hand,

D∗
(
ρ
∗, 0̃
)
≤ D∗

(
ρ
∗,ρm

)
+D∗

(
ρm, 0̃

)
,

and hence

D∗
(
ρ
∗, 0̃
)
≤

(βM f +ηMH)
m

1− (βM f +ηMH)
M0M f +

M0M f

1− (βM f +ηMH)
+Mg.

Therefore, from (βM f +ηMH)< 1, we see that

D∗
(
ρ
∗, 0̃
)
≤

M0M f

1− (βM f +ηMH)
+

M0M f

1− (βM f +ηMH)
+Mg =

2M0M f

1− (βM f +ηMH)
+Mg

we conclud that the solution of Eq. (3), ρ∗, is bounded.

Theorem 3. Under the conditions (1)-(6), the sequence of successive approximations (5) is uniformly
Lipschitz, that is, there exist a constant L such that DF

(
ρm(t1),ρm(t2)

)
≤ L|t1− t2| for all m ∈ N∗ and

t1, t2 ∈ [0,1].
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Proof. From the condition (4) it is clear that DF
(
ρ0(t1),ρ0(t2)

)
≤ γ|t1− t2| for all t1, t2 ∈ [0,1]. For

m ∈ N∗ it results that

DF
(
ρ(t1),ρ(t2)

)
≤ DF

(
g(t1),g(t2)

)
+DF

(
f (t1,ρ(t1))� (FR)

∫ 1

0
v
(
t1,s,ρ(s)

)
ds, f (t2,ρ(t2))� (FR)

∫ 1

0
v
(
t2,s,ρ(s)

)
ds
)

≤ γ|t1− t2|+DF

(
f (t1,ρ(t1))� (FR)

∫ 1

0
v
(
t1,s,ρ(s)

)
ds, f (t1,ρ(t1))� (FR)

∫ 1

0
v
(
t2,s,ρ(s)

)
ds
)

+DF

(
f (t1,ρ(t1))� (FR)

∫ 1

0
v
(
t2,s,ρ(s)

)
ds, f (t2,ρ(t2))� (FR)

∫ 1

0
v
(
t2,s,ρ(s)

)
ds
)

≤ γ|t1− t2|+DF

(
(FR)

∫ 1

0
f (t1,ρ(t1))�v

(
t1,s,ρ(s)

)
ds,(FR)

∫ 1

0
f (t1,ρ(t1))�v

(
t2,s,ρ(s)

)
ds
)

+DF

(
(FR)

∫ 1

0
f (t1,ρ(t1))�v

(
t2,s,ρ(s)

)
ds,(FR)

∫ 1

0
f (t2,ρ(t2))�v

(
t2,s,ρ(s)

)
ds
)

≤ γ|t1− t2|+
∫ 1

0
DF

(
f (t1,ρ(t1))�v

(
t1,s,ρ(s)

)
, f (t1,ρ(t1))�v

(
t2,s,ρ(s)

))
ds

+
∫ 1

0
DF

(
f (t1,ρ(t1))�v

(
t2,s,ρ(s)

)
, f (t2,ρ(t2))�v

(
t2,s,ρ(s)

))
ds

≤ γ|t1− t2|+
∫ 1

0
‖ f (t1,ρ(t1))‖F DF

(
v
(
t1,s,ρ(s)

)
,v
(
t2,s,ρ(s)

))
ds

+
∫ 1

0

∥∥v
(
t2,s,ρ(s)

)∥∥
F DF

(
f (t1,ρ(t1)), f (t2,ρ(t2))

)
ds

≤ γ|t1− t2|+M f α|t1− t2|+MHδ |t1− t2|= (γ +αM f +δMH)|t1− t2|
= L|t1− t2|, ∀t1, t2 ∈ [0,1],m ∈ N∗.

Thus the sequence (ρm)m∈N is uniformly Lipschitz with the Lipschitz constant L = (γ +αM f + δMH),
which completes the proof.

Remark 1. Since (βM f +ηMH) < 1, it is easy to show that lim
m→∞

D∗(u∗,ρm) = 0. Thus, the proposed
method is convergent.

In the next section we present a numerical example.

4 Numerical experiments

Example 1. In ( [19, Page 47]) the author showed that a relationship between three fundamental traffic
variables is as follows

q(x, t) = ρ(x, t)v(x, t). (14)

where q, ρ and v represents the traffic flow, traffic density and the speed of the traffic flow, respectively.
This relationship represents the fundamental equation of traffic flow. Lighthill and Whitham and also
Richards observed that the average equilibrium speed of the vehicles is a function of the traffic density
( [16, Page 321], [14, Page 286])
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v(x, t) = F
(
ρ(x, t)

)
,

If there is a gap or depression in part of the road, the conservation equation is as follows

∂ρ

∂ t
+

∂q
∂x

= g(x, t) (15)

where g(x, t) is the generation (or dissipation) rate in vehicle per unit time per length. Therefore for
vehicle traffic flow, the flow is given by Eq. (14), and so we can rewrite the ∂q

∂x as

∂q
∂x

=
∂ (ρv)

∂x
. (16)

Eq. (15) then becomes
∂ρ

∂ t
+

∂ (ρv)
∂x

= g(x, t). (17)

This is another form of the conservation equation that shows the relationship between speed and traffic
density.

On the other hand, in [10, Page 85] author showed that some models for “concrete” problems in
vehicular traffic, biology, queuing theory, etc. lead to integro differential equations involving terms such
as f (t,ρ(t))

∫ 1
0 v
(
t,s,ρ(s)

)
ds.

Given the need for fuzzy information in analyzing real world problems, we can present the following
nonlinear fuzzy integral equation to compute the density of traffic

ρ(x, t) = g(x, t)⊕ f (x, t,ρ(t))� (FR)
∫ 1

0
v
(
x, t,s,ρ(s)

)
ds,

where

g(x, t) =
(
g(x, t,r),g(x, t,r)

)
=

(
x(r2 + r)

(
1− (r2 + r)t2

π

)
sinπt,x(4− r3− r)

(
1− (4− r3− r)t2

π

)
sinπt

)
, t,r ∈ [0,1],

and kernels

f
(
x, t,ρ(t)

)
= xtρ(t), v

(
x, t,s,ρ(s)

)
=

tsρ(s)
x

, t,r ∈ [0,1].

Since the solution of the integral equation, ρ , is a continuous function, therefore it is uniform continuous
and bounded function in [0,1]. Hence, the functions g, f and v satisfy all the conditions of Theorem 2.
So the aforementioned integral equation has a unique solution. The exact solution of this example is

ρ(x, t) =
(
ρ(x, t,r),ρ(x, t,r)

)
=
(
x(r2 + r)sinπt,x(4− r3− r)sinπt

)
.

To compare the exact and iterative solutions with m = 20, see Table 1.
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Table 1: Numerical results for Example 1.

t=0.25 t=0.5 t=0.75
r-level |ρ−ρ

m
| |ρ−ρm| |ρ−ρ

m
| |ρ−ρm| |ρ−ρ

m
| |ρ−ρm|

0.0 0 3.43852e-8 0 2.42751e-7 0 6.68776e-7
0.1 0 3.75784e-8 0 4.36718e-7 0 5.23589e-7
0.2 0 2.24772e-8 2.77556e-17 6.74589e-7 1.38778e-16 4.37159e-7
0.3 0 2.61437e-8 4.92347e-15 8.39624e-7 4.27496e-15 3.94238e-7
0.4 5.16254e-15 2.88822e-8 3.69704e-14 9.09434e-8 1.07582e-13 2.50537e-7
0.5 7.23742e-14 5.48536e-9 5.32641e-14 6.42791e-8 7.57912e-13 2.39874e-7
0.6 3.81332e-13 5.58662e-9 2.74669e-12 3.94391e-8 7.56528e-12 1.08646e-7
0.7 5.34912e-12 3.12874e-9 9.77556e-11 2.29613e-8 8.22602e-11 1.00534e-7
0.8 9.93228e-12 3.44815e-9 6.01157e-11 1.02232e-8 1.93125e-10 2.81613e-8
0.9 6.74521e-11 3.53852e-9 3.17255e-11 7.32187e-9 6.84639e-10 6.39541e-8
1.0 1.36869e-10 1.36869e-10 9.66202e-10 9.66202e-10 2.66141e-9 2.66141e-9

5 Conclusion

In this paper, fuzzy integral equations that are derived from the road traffic flow are discussed. In this
research, Banach fixed point theorem was used to prove the existence and uniqueness of the solution
of fuzzy integral equations arising of traffic flow. Finaly, we got the error estimation between the exact
solution and the solution of the iterative method. Comparison of the results of the iteration method and
the exact answer of the integral equations arising of traffic flow in the one example presented showed
that the use of the iterative method in finding the solution of such integral equations has high accuracy.
Given the widespread use of this kind of integral equations in traffic engineering, in future, the authors
plan to work on numerical solution of these integral equations.
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