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Abstract. We study the combination of the Sinc and the Gaussian radial basis functions (GRBF) to
develop the numerical methods for the time–space fractional diffusion equations with the Riesz fractional
derivative. The GRBF is used to approximate the unknown function in spatial direction and the Sinc
quadrature rule associated with double exponential transformation is applied to approximate the arising
integrals. Three practical examples are considered for testing the ability of the proposed method.
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1 Introduction

Fractional differentials interpret the mathematical models that arise in science and engineering more ac-
curately and naturally. Theory of fractional calculus can be studied in [15,30,34]. Several textbooks have
studied various models of fractional equations arising in many fields of science and engineering, such
as chemistry [37], physics [13] and continuum mechanics [6]. Also several articles have studied various
models of fractional equations in science and engineering, for example one can see chaotic behavior
of fractional predator-prey dynamical system in [21], the behaviour of immune and tumor cells in im-
munogenetic tumor model with non-singular fractional derivative [12, 22] and the Boussinesq-Burgers
equations, which arise in propagation of shallow-water waves [20]. The distributed order fractional
Riccati differential equation and fractional Bagley–Torvik equation have been considered in [1, 2] by
Aminikhah et al.
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Here we consider both the time and space fractional diffusion equations

C
0 Dβ

t u(x, t)− ∂ αu(x, t)
∂ |x|α

= g(x, t), x ∈ (a,b), t ∈ (0,T ], (1)

where 1 < α ≤ 2, 0 < β ≤ 1 and ∂ α u(x,t)
∂ |x|α is the Riesz fractional derivative which is defined by [3]

∂ αu(x, t)
∂ |x|α

=
−1

2cos
(

πα

2

) (∂ αu(x, t)
∂+xα

+
∂ αu(x, t)

∂−xα

)
, x ∈ (a,b), (2)

with the boundary conditions
u(a, t) = u(b, t) = 0, t ∈ (0,T ], (3)

and the initial condition
u(x,0) = 0, x ∈ [a,b]. (4)

In Eq. (2), when dαe = n, the left and right fractional derivatives for given function v(x) are defined
using the Riemann-Liouville and Caputo fractional derivatives as shown in [34, 37, 47]

∂ α v(x)
∂+xα =a Dα

x v(x) =
n−1

∑
k=0

v(k)(a)
Γ(k−α +1)

(x−a)k−α +C
a Dα

x v(x) , (5)

∂ α v(x)
∂−xα =x Dα

b v(x) =
n−1

∑
k=0

v(k)(b)
Γ(k−α +1)

(b− x)k−α +C
x Dα

b v(x) . (6)

In Eqs. (1), (5) and (6), the left and right Caputo fractional derivatives of order n− 1 ≤ γ < n for the
function v(τ) are given by

C
a Dγ

τv(τ) = aIγ

τ

(
dn

dτn v(τ)
)
=

1
Γ(n− γ)

τ∫
a

dn

dsn v(s)

(τ− s)γ−n+1 ds, (7)

C
τ Dγ

bv(τ) = τ Iγ

b

(
dn

dτn v(τ)
)
=

1
Γ(n− γ)

b∫
τ

dn

dsn v(s)

(s− τ)γ−n+1 ds. (8)

The fractional diffusion equations with left and right side fractional derivatives have been used in ran-
dom motion of the particles, such as transport processes in physics [5, 7, 27], Brownian motion [8] and
random walk [35]. In [47], the authors developed a fast direct solution of fractional diffusion equa-
tions by using a shifted Grnwald finite difference discretization that reduce the memory requirement of
the finite difference method to O(N ). The numerical contour integral method for fractional diffusion
equations with variable coefficients were studied in [45]. The finite difference combining with the trape-
zoidal scheme was used to solve the time–space fractional diffusion equation in [3]. The coupling of
the homotopy perturbation and the Laplace transform method to find the analytical solution of the new
Yang-Abdel-Aty-Cattani fractional diffusion equation which converges to the exact solution in terms of
Prabhaker function has been implemented by Kumar et al. in [23]. Kumar et al. in [17] applied the ho-
motopy perturbation transform method and residual power series method to solve the multidimensional



Combination of Sinc and radial basis functions for time-space fractional diffusion equations 317

heat equations of arbitrary order, where the new fractional operator has been taken in the new Yang-
Abdel-Aty-Cattani (YAC) sense. The Haar wavelet operational matrix of the fractional order integration
and Adams-Bashforth-Moulton methods are derived and used to solve the fractional LV model in the
Caputo sense in [19]. The fractional homotopy analysis transform method, which is an innovative ad-
justment in Laplace transform algorithm (LTA), is used for space-fractional telegraph equation by Kumar
in [16]. The fractional homotopy analysis transform method (FHATM) has been applied to solve nonlin-
ear homogeneous and nonhomogeneous time-fractional gas dynamics equations in [24]. The coupling
of Adomian decomposition method (ADM) and Laplace transform method (LTM) is used to obtain the
solution of time-fractional NavierStokes equation in [18] by Kumar et al.

In addition, there are several numerical methods for solving the fractional diffusion equations, such
as the finite difference method [28, 29, 39, 46], the finite element method [11, 14, 40], the preconditioned
iterative method [25], the RBF meshless method [36], the Chebyshev tau method [38] and the shifted
Legendre tau method [41].

In our approach we use the double exponential transformation (DE) Sinc quadrature rule to approx-
imate the integrand of fractional integral. The approximate formula based on the DE-Sinc method for
Caputo fractional derivatives was developed in [32,33]. A survey of application of Sinc methods in frac-
tional calculus was provided in [4]. Also we use the GRBF method to approximate the solution of the
fractional diffusion problems.

The paper is organized as follows. In Section 2, we introduce Sinc function and review some defini-
tions, theorems and notations. In Section 3 we describe the Gaussian RBFs approximation method. In
Section 4, we develop the RBF-Sinc approximation method to apply to both time and space fractional
diffusion equations. In Section 5, we develop the RBF-Sinc approximation method to apply to the space
fractional diffusion equations. Finally, in Section 6, we test our methods on three examples. The obtained
results were are compared with those of the existing methods.

2 Sinc method

We first review some properties of the Sinc quadrature rule [26, 42]. The Sinc function is defined by

Sinc(t) =
{ sin(πt)

πt , t 6= 0,
1, t = 0.

Let j be an integer and h be a positive number. The jth shifted Sinc function is defined by

S( j,h)(t) = Sinc(
t− jh

h
).

Since most of the problems are defined over a finite interval (a,b), we need the transformation that
maps the interval (−∞,∞) to a finite interval (a,b). Here we use the double exponential transformation
[31, 43, 44], as

t = ψa,b(z) =
b−a

2
tanh(

π

2
sinh(z))+

b+a
2

,

and its inverse function defined by

z = (ψa,b)
−1(t) = ϕa,b(t) = log

 1
π

log(
t−a
b− t

)+

√
1+
(

1
π

log(
t−a
b− t

)

)2
 .
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We define the Sinc points as tk = ψa,b(kh).
Let f (t) be the analytic function on a strip domain Dd = {z ∈ C :| Im(z) |< d} for some d > 0,

and bounded in some sense. For the double exponential (DE) transformations, the condition should be
considered on the translated domain

ψa,b(Dd) =

z ∈ C :

∣∣∣∣∣∣arg

 1
π

log(
t−a
b− t

)+

√
1+
(

1
π

log(
t−a
b− t

)

)2
∣∣∣∣∣∣< d

 .

The truncated Sinc quadrature rule can be defined by∫ b

a
f (x)dx =

∫
∞

−∞

f (ψa,b(s))ψ ′a,b(s)ds = h ∑
j∈Z

f (ψ( jh))ψ ′( jh). (9)

Following [32], if f ∈ Lβ (ψa,b(Dd)) for 0 < d < π

2 . Let M be a positive integer, and h be selected by
h = log(dM

β
)/M, β = 2−α , then there exist constants C > 0 independent of M, such that∣∣∣∣∣

∫ b

a
f (x)dx−h

M

∑
k=−M

f (ψa,b(kh))(ψa,b)
′(kh)

∣∣∣∣∣≤C exp

(
−πdM
log(dM

β
)

)
. (10)

3 The GRBF-Sinc approximation method for left and right fractional
derivatives

The radial basis functions (RBFs) depend on the distance from some center points [9, 10, 48]. Here we
use Gaussian basis function ϕ(r) = e−ε2r2

, where ε is the shape parameter which takes the arbitrary
values.
The approximate expansion of u(x) can be obtained by

u(x)≈
N

∑
i=1

µiϕi(r) =
N

∑
i=1

µiϕ(‖x− xi‖2) = SN(x), (11)

where xi, i = 1,2, . . . ,N are center points, ‖.‖2 is the Euclidean norm, µi are the coefficients and ϕ is the
RBF function. The exponential convergence of RBF have been studied in [48].

We try to find a matrix D corresponding to the fractional differential operator C
a Dα

x of function u(x)
which is approximated by the radial basis function ϕ(r). By using Eq. (11) we get an RBF expansion of
the function value u j at each node x j as follows

u j =
N

∑
i=1

µiϕ(
∥∥x j− xi

∥∥
2). (12)

It can be shown that AΞ=U, where Ai j = ϕ
(∥∥x j− xi

∥∥
2

)
, ΞT = [µ1, . . . ,µN ] and UT = [u(x1), . . . ,u(xN)].

By applying the differential operator C
a Dα

x and C
x Dα

b to Eq. (12) gives

C
a Dα

x u(x)|x=x j =Uα
+ j =

N

∑
i=1

µi
C
a Dα

x ϕ(‖x− xi‖2)|x=x j , (13)
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C
x Dα

b u(x)|x=x j =Uα
− j =

N

∑
i=1

µi
C
x Dα

b ϕ(‖x− xi‖2)|x=x j , (14)

and the matrix form of (13) and (14) are B+Ξ =Uα
+ , B−Ξ =Uα

− , where B+
i j =

C
a Dα

x ϕ (‖x− xi‖2) |x=x j and
B−i j =

C
x Dα

b ϕ (‖x− xi‖2) |x=x j .
Using the Sinc quadrature rule for fractional integrand of (7) we try to approximate each elements of

the matrices B+and B−. By the change of variable

s = ψa,x(τ) =
x−a

2
tanh(

π

2
sinh(τ))+

x+a
2

,

and
s = ψx,b(τ) =

b− x
2

tanh(
π

2
sinh(τ))+

b+ x
2

,

for 1 < α 6 2, we obtain

C
a Dα

x ϕi(x) =a Iα
x [

d2

dx2 ϕi](x) =
1

Γ(2−α)

∫ x

a

ϕ ′′i(s)
(x− s)α−1 ds

= (x−a)2−α

Γ(2−α)

∫
∞

−∞

π cosh(τ)ϕ ′′i (ψa,x(τ))

(1+ e−π sinh(τ))(1+ eπ sinh(τ))2−α
dτ,

C
x Dα

b ϕi(x) =x Iα
b [

d2

dx2 ϕi](x) =
1

Γ(2−α)

∫ b

x

ϕ ′′i(s)
(s− x)α−1 ds

= (b−x)2−α

Γ(2−α)

∫
∞

−∞

π cosh(τ)ϕ ′′i (ψx,b(τ))

(1+ e−π sinh(τ))2−α(1+ eπ sinh(τ))
dτ.

By applying the quadrature rule (9) we can estimate the left and right Caputo fractional derivative of the
function ϕ as

C
a Dα

x ϕi(x) =a Iα
x [

d2

dx2 ϕi](x)≈I +
M [

d2

dx2 ϕi](x)

= (x−a)2−α

Γ(2−α) h
M

∑
k=−M

π cosh(kh)ϕ ′′i (ψa,x(kh))
(1+ e−π sinh(kh))(1+ eπ sinh(kh))2−α

= (x−a)2−α

Γ(2−α) h
M

∑
k=−M

π cosh(kh)
(

4ε4 (ψa,x(kh)− xi)
2−2ε2

)
e−ε2(ψa,x(kh)−xi)

2

(1+ e−π sinh(kh))(1+ eπ sinh(kh))2−α
,

(15)

and

C
x Dα

b ϕi(x) =x Iα
b [

d2

dx2 ϕi](x)≈I −
M [

d2

dx2 ϕi](x)

= (b−x)2−α

Γ(2−α) h
M

∑
k=−M

π cosh(kh)ϕ ′′i (ψx,b(kh))
(1+ e−π sinh(kh))2−α(1+ eπ sinh(kh))

= (b−x)2−α

Γ(2−α) h
M

∑
k=−M

π cosh(kh)
(

4ε4 (ψx,b(kh)− xi)
2−2ε2

)
e−ε2(ψx,b(kh)−xi)

2

(1+ e−π sinh(kh))2−α(1+ eπ sinh(kh))
.

(16)



320 S. Mohammadi Rick, J. Rashidinia, A.H. Refahi Sheikhani

Then by considering (3), (5) and (6) at the grid point x j we have

∂ α u(x)
∂+xα |x=x j =

u′(a)
Γ(2−α)(x j−a)1−α +C

a Dα
x u(x)|x=x j , j = 1, . . . ,N,

∂ α u(x)
∂−xα |x=x j =

u′(b)
Γ(2−α)(b− x j)

1−α +C
x Dα

b u(x)|x=x j , j = 1, . . . ,N,

and the matrix forms are
U+

α = Λ
+

Φ
1
a

T
Ξ+B+

Ξ, (17)

U−α = Λ
−

Φ
1
b

T
Ξ+B−Ξ, (18)

where

Λ
+ =

1
Γ(2−α)


(x1−a)1−α

(x2−a)1−α

...
(xN−a)1−α

 , Φ
1
a =


ϕ ′(‖a− x1‖2)
ϕ ′(‖a− x2‖2)

...
ϕ ′(‖a− xN‖2)

 ,

Λ
− =

1
Γ(2−α)


(b− x1)

1−α

(b− x2)
1−α

...
(b− xN)

1−α

 , Φ
1
b =


ϕ ′(‖b− x1‖2)
ϕ ′(‖b− x2‖2)

...
ϕ ′(‖b− xN‖2)

 .
By using (12) we can eliminate the vector Ξ = A−1U in Eqs. (17) and (18) and obtain

U+
α =

(
Λ+Φ1

a
T A−1 +B+A−1

)
U =Dα

+U,

U−α =
(

Λ−Φ1
b

T A−1 +B−A−1
)

U =Dα
−U.

Then (
Dα

++Dα
−
)
U =DαU. (19)

In the sequel, we obtain the following theorem for the convergence of the presented method.

Theorem 1. Let SN(x) be an approximation of the function u(x) defined by (11). Then there exist con-
stants K and C such that∣∣∣∣∂ αu(x)

∂+xα
− ∂ α ū(x)

∂+xα

∣∣∣∣≤ (b−a)2−α

Γ(2−α)
Khl−2

Ω
cu +C exp

(
−πdM
log(dM

β
)

)
.

Proof. Assume that
∂ α u(x)
∂+xα = u′(a)

Γ(2−α)(x−a)1−α +C
a Dα

x u(x),

∂ α ū(x)
∂+xα = S′N(a)

Γ(2−α)(x−a)1−α +I +
M

[
d2

dx2 SN

]
(x).

According to Sections 2 and 3 and by using relation (21) we have∣∣∣∣∂ αu(x)
∂+xα

− ∂ α ū(x)
∂+xα

∣∣∣∣≤ |x−a|1−α

Γ(2−α)

∣∣u′(a)−S′N(a)
∣∣+ ∣∣∣∣Ca Dα

x u(x)−I +
M

[
d2

dx2 SN

]
(x)
∣∣∣∣ , (20)
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and by using [34, Theorem 11.14, page 183 ] we have

|Dnu(x)−DnSN(x)|6 K1hl−n
Ω
|u|Nϕ (Ω), n = 1,2, (21)

where Nϕ is a Hilbert space corresponding to ϕ and hΩ = max
x∈Ω

min
1≤i≤N

‖x− xi‖ is the meshsize and K1, l

are positive constant. Then, by considering (10) for the second term in the right-hand side of (20) we
obtain ∣∣∣Ca Dα

x u(x)−I +
M

[
d2

dx2 SN

]
(x)
∣∣∣

≤
∣∣∣Ca Dα

x u(x)−I +
M

[
d2

dx2 u
]
(x)
∣∣∣+ ∣∣∣I +

M

[
d2

dx2 u
]
(x)−I +

M

[
d2

dx2 SN

]
(x)
∣∣∣

≤C exp
(
−πdM

log( dM
β
)

)
+ |x−a|2−α

Γ(2−α) h
M

∑
k=−M

π cosh(kh) |u′′(ψa,x(kh))−S′′N(ψa,x(kh))|
(1+ e−π sinh(kh))(1+ eπ sinh(kh))

2−α

≤C exp
(
−πdM

log( dM
β
)

)
+ (b−a)2−α

(2−α)Γ(2−α) (|u
′′(x)−S′′N(x)|L∞)

≤C exp
(
−πdM

log( dM
β
)

)
+ (b−a)2−α

Γ(3−α) K1hl−2
Ω

cu,

where cu = |u|Nϕ (Ω) and finally we get

∣∣∣ ∂ α u(x)
∂+xα − ∂ α ū(x)

∂+xα

∣∣∣ ≤ (b−a)1−α

Γ(2−α) K1hl−1
Ω

cu +C exp
(
−πdM

log( dM
β
)

)
+ (b−a)2−α

Γ(3−α) K1hl−2
Ω

cu

≤ (b−a)2−α

Γ(2−α) Khl−2
Ω

cu +C exp
(
−πdM

log( dM
β
)

)
.

So, the proof is complete.

By applying the similar manner one can get the same result for the error bound of the left-hand side
of the fractional derivative in equation (6).

4 The GRBF-Sinc approximation method for both the time and space
fractional diffusion equations

If the given function v(t) vanishes at t = 0, then the relationship between the Riemann-Liouville and
Caputo and Grunwald fractional derivatives are as follows [47]

RL
0 Dβ

t v(t) =C
0 Dβ

t v(t) =G
0 Dβ

t v(t) = lim
∆t→0

1

∆tβ

b t
∆t c+1

∑
`=0

(−1)`
(

β

`

)
v(t− (`−1)∆t), (22)

where 0 < t ≤ T , ∆t = T/τ and τ is the time grid number. By using the time partition tn = n∆t for
n = 0, . . . ,τ , we have the following shifted Grunwald finite difference discretization

[
C
0 Dβ

t u(x j, t)
]∣∣∣

t=tn
=

1

∆tβ
Γ(−β )

n+1

∑
`=0

Γ(`−β )

Γ(`+1)
un−`+1

j +o(∆t), j = 1, . . . ,N. (23)
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Then by considering both the time and space fractional diffusion equation (1) and applying GRBF-Sinc
approximation method in space dimension and shifted Grunwald finite difference discretization (23) in
time dimension we obtain the following stage matrix equation(

2I + ∆tβ

2cos( πα

2 )
Dα

)
Un+1 =

(
2β I− ∆tβ

2cos( πα

2 )
Dα

)
Un

− 2
Γ(−β )

n+1

∑
`=2

Γ(`−β )

Γ(`+1)
Un−`+1

j +∆tβ Gn+ 1
2 , U0 = 0,

(24)

where I is the identity matrix of order N, Gn is the time-dependent analogue of G at the time step which
is defined as GT = [g(x1, t), . . . ,g(xN , t)] and n = 0, . . . ,τ . By solving equation (24) we can obtain the
solution of problem (1)–(3) at the final time t = T .

5 GRBF-Sinc approximation method for space fractional diffusion equa-
tions

In the case of β = 1, we can consider the following space fractional diffusion equation

∂u(x, t)
∂ t

− p1(x, t)
∂ αu(x, t)

∂+xα
− p2(x, t)

∂ αu(x, t)
∂−xα

= g(x, t), x ∈ (a,b), t ∈ (0,T ], (25)

with the boundary conditions
u(a, t) = u(b, t) = 0, t ∈ (0,T ], (26)

and the initial condition
u(x,0) = u0(x), x ∈ [a,b]. (27)

To approximate the solution of the space fractional diffusion Eq. (25), we apply the GRBF-Sinc approx-
imation method which was developed in the previous section for space dimension of (25) and discretize
in time with a Crank-Nicolson scheme.

Let
∂u(x j, t)

∂ t
=

un+1
j −un

j

∆t
,

for j = 1, . . . ,N and ∆t = T/τ , then we obtain following stage matrix equation(
2I−∆tPn+1

1 Dα
+−∆tPn+1

2 Dα
−
)︸ ︷︷ ︸

A

Un+1 =
(
2I +∆tPn

1 D
α
++∆tPn

2 D
α
−
)︸ ︷︷ ︸

B

Un +
(

∆tGn+ 1
2

)
︸ ︷︷ ︸

Q

, (28)

where I is the identity matrix of order N and Pn
1 , Pn

2 and Gn are the time-dependent analogous to
P1, P2 and G at the time step which is defined as Pi = diag(pi(x1), . . . , pi(xN)) , i = 1,2 and GT =
[g(x1, t), . . . ,g(xN , t)]. Then we can rewrite the matrix equation (28) as follows

Un+1 = A−1 (BUn +G) , U0 =


u0(x1)
u0(x2)

...
u0(xN)

 , n = 0, . . . ,τ, (29)

where u0(x) is the initial condition (27). By solving the system (29) we can obtain the numerical solution
of the space fractional diffusion equations (25)–(27) at the final time t = T .
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6 Numerical Illustration

The propose methods are applied on three examples to test the efficiency and accuracy of the purposed
methods. We set M = 50, d = 3.14/2, β = 2−α and h = log(dM

β
)/M. We solve these examples for

various values of the shape parameter, ε = 0.1,0.01,0.001.

Example 1. We consider the space fractional diffusion problem (25)–(27) with the fractional derivative
of order α = 1.8, p1(t) = p2(t) = Γ(1.2)t,

g(x) =−e−tx2(2− x)2−8te−t
(

x
1
5 +(2− x)

1
5 − 5

2

(
x

6
5 +(2− x)

6
5

)
+

25
22

(
x

11
5 +(2− x)

11
5

))
,

and the initial condition u0(x) = x2(2−x)2, x ∈ (0,2). The exact solution is u(x, t) = e−tx2(2−x)2 [47].
We apply the GRBF-Sinc method presented in Section 5 to this example for computing the solution at
T = 1. The max-absolute errors in the solution verses the number of Chebyshev nodes N for α = 1.8 at

Figure 1: Graph of max-absolute error in solving Example 1.

T = 1 plotted in Figure 1, shows that resulting error in the solution of equation (25) using GRBF and
DE-Sinc quadrature method at T = 1 with ε = 0.1,0.01,0.001, τ = 128 and number of Chebyshev nodes
8≤ N ≤ 14 decreases when ε decreases and N increases.

The approximate solution and error in solving Example 1 for α = 1.8 by applying the GRBF-Sinc
method with ε = 0.001, N = 12 and τ = 128 have been plotted in Figure 2. The comparison of max-
absolute errors of our method and the finite difference methods presented in [47], is tabulated in Table 1
for different values of N and M as the spatial and time grids, respectively.

Example 2. Consider the space fractional diffusion problem (25)–(27) with fractional derivative of order
α = 1.5 and

p1(x) =−cos
(

π(x+1)
6

)
, p2(x) =−sin

(
π(x+1)

6

)
,

and

g(x) =−32e−tx3(1− x)3− 256e−t

105
√

π

[(
105x

3
2 −504x

5
2 +720x

7
2 −320x

9
2

)
cos
(

π(1+x)
6

)
+
(
1+23x−264x2 +560x3−320x4

)√
1− xsin

(
π(1+x)

6

)
].
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Figure 2: Graphs of approximate solution and error in the solution of Example 1 for α = 1.8.

Table 1: Comparison of max-absolute errors of the GRBF-Sinc method with α = 1.8, ε =
0.01,0.001, M = 50,τ = 128 and the Levinson and Superfast methods [47] for Example 1.

GRBF-Sinc method The Methods in [47]
N ε = 0.01 ε = 0.001 N M Levinson Super f ast
8 7.319×10−7 6.643×10−7 213 212 1.327×10−5 1.327×10−5

10 4.499×10−7 4.498×10−7 214 213 6.650×10−6 6.648×10−6

12 4.134×10−7 4.134×10−7 215 214 3.343×10−6 3.338×10−6

The initial condition is u0(x) = 32x3(1−x)3, x ∈ (0,1). The exact solution is u(x, t) = 32e−tx3(1−x)3

[45].
We have applied our method presented in Section 5 to this example and obtained the computed

solution at the time T = 1. The max-absolute errors in the computed solution plotted in Figure 3 with
ε = 0.1,0.01,0.001, τ = 128 and number of the Chebyshev nodes 8 ≤ N ≤ 14. It can be seen that we
can obtain notable results with small numbers of basis functions.

Figure 4 shows the approximate solution and error in solving Example 2 for α = 1.5 by applying the
GRBF-Sinc method with ε = 0.01, N = 12 and τ = 128.

We compare our results by the results of the Contour integral method given in [45] in Table 2 and J
denotes the spatial grid number and N denotes the number of quadrature nodes.

Table 2: Comparison of max-absolute errors of the GRBF-Sinc method with α = 1.5, ε =
0.01,0.001, M = 50,τ = 128 and method [45] for Example 2.

GRBF-Sinc method Contour integral
N ε = 0.01 ε = 0.001 J N Error
8 1.795×10−4 2.246×10−6 1024 10 3.472×10−4

10 2.891×10−7 2.879×10−7 2048 11 1.756×10−4

12 2.761×10−7 2.761×10−7 4096 11 8.822×10−5

Example 3. Let us consider both the time and the space fractional diffusion equation (1)–(3) with the
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Figure 3: Graph of max-absolute error for Example 2 for α = 1.5 at T = 1 with respect to the number of
the Chebyshev nodes N by applying the GRBF-Sinc method with ε = 0.1,0.01,0.001 and τ = 128.

Figure 4: Graph of the approximate solution and error in solving Example 2 for α = 1.5 by applying the
GRBF-Sinc method with ε = 0.01, N = 12 and τ = 128.

Reisz fractional [3]
C
0 Dβ

t u(x, t)− ∂ αu(x, t)
∂ |x|α

= g(x, t), x ∈ (a,b), t ∈ (0,T ], (30)

where 1 < α < 2 and 0 < β < 1 and

g(x) = 2
Γ(3−β ) t

2−β x2(1− x)2 + t2

cos( πα

2 )Γ(5−α)
(12(x4−α +(1− x)4−α)−6(4−α)(x3−α +(1− x)3−α)

+(3−α)(4−α)(x2−α +(1− x)2−α)),

and the exact solution is u(x) = t2x2(1− x)2 . The approximate and the exact solution and the resulting
error in solution (30) for α = 1.5 and β = 0.5 using the GRBF and DE-Sinc quadrature method with
ε = 0.01, τ = 100 and number of equispaced nodes N = 14 have been plotted in Figure 5.

The comparison of the errors in the grid point of the GRBF-Sinc method and the trapezoidal scheme
with finite difference method presented in [3], for β = 0.8 and α = 1.2,1.4,1.6, is tabulated in Table
3. It is mentioned that, N′ and τ ′ denote the spatial and time grids, respectively. Here, we have set
τ = τ ′ = 1000 to compare our mathod presented in Section 4.
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Figure 5: Graph of the approximate solution and the error in solution of Example 3 for α = 1.5, β = 0.5
by applying the GRBF-Sinc method with ε = 0.01, N = 14 and τ = 100.

Table 3: Comparison of the errors of the GRBF-Sinc method with β = 0.8, ε = 0.001, M = 50,τ = τ ′ =
1000 and the Trapezoidal scheme [3] for Example 3.

GRBF-Sinc method Trapezoidal scheme [3]
N α = 1.2 α = 1.4 α = 1.6 N′ α = 1.2 α = 1.4 α = 1.6
5 1.025×10−5 6.912×10−6 9.115×10−6 5 1.550×10−3 2.290×10−3 3.269×10−3

8 9.210×10−6 5.394×10−6 5.289×10−6 10 3.374×10−4 5.035×10−4 7.436×10−4

10 1.487×10−6 3.782×10−6 2.802×10−6 20 7.808×10−5 1.132×10−4 1.694×10−4

12 1.130×10−6 2.601×10−6 2.207×10−6 40 1.889×10−5 2.603×10−5 3.865×10−5

14 1.023×10−6 2.052×10−6 2.036×10−6 80 4.514×10−6 5.888×10−6 8.585×10−6

7 Conclusion

In the present work, a combination of the Sinc and the GRBF has been used for the time-space frac-
tional diffusion equation with Reisz fractional derivative (in Section 4), and also for the space fractional
diffusion equation (in Section 5). Our presented approach is able to give a quite accurate approximate
solution. The comparison with recent existing methods in illustrated examples justifies the efficiency and
accuracy of our presented approach.
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