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Abstract. We consider initial boundary value problem for in-situ leaching process of rare metals
at the microscopic level. This physical process describes by the Stokes equations for the liquid
component coupled with the Lame’s equations for the solid skeleton and the diffusion-convection
equations for acid concentration. Due to the dissolution of the solid skeleton, the pore space has
an unknown (free) boundary. For formulated initial boundary-value problem we prove existence
and uniqueness of the classical solution.
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1 Introduction

In the present publication we consider the dissolution of the elastic solid skeleton by acid at
the microscopic level. This problem has been considered before only at the macroscopic level
by several authors [3, 4, 10]. All of them just postulated the corresponding model without any
justification. It is quite understandable, since the main mechanism of the physical process is
focused on the unknown (free) boundary between the pore space and the solid skeleton and not
spelled out in any way in the proposed macroscopic models. That is why there is a great variety
of models, depending on the tastes and preferences of its authors.

Sanchez-Palencia [11] and Burridge and Keller [2] outlined the right way of mathematical
modeling as a passage from microstructure to macrostructure. Following this idea we consider
at the microscopic level a joint motion of the compressible viscous liquid, described by Stokes
equations, and the compressible elastic skeleton, governed by Lame’s equations, coupled with
diffusion-convection equations for the acid and products of chemical reactions. Fortunately, the
dynamics of chemical reaction products are determined after finding the dynamics of the acid
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itself. So, we may restrict ourself only with Lame’s, Stokes and diffusion-convection equations
for the acid and corresponding boundary and initial conditions.

The problem under consideration is the free boundary problem. In other words, we need
to find a solution to the boundary value problem along with the domain, where we are looking
for this solution. Note, that free boundary problems are the most difficult part of the theory of
partial differential equations [7]. That is why we restrict ourself with one dimensional case.

In Section 2 we state the mathematical problem. In Section 3 we formulate existence (The-
orem 1) and uniqueness results. Section 4 is devoted to the proof of Theorem 1.

We use notations of functional spaces and norm there from [5,6].

2 The problem statement

Let R(t) be unknown function of the variable t ∈ (0, T ), defined the position of the free boundary

ΓR =
t=T⋃
t=0

ΓR(t) ∈ QT = Q× (0, T ),

where Q = {x ∈ R : 0 < x < L}.
Let also Ωf,R(t) = {x : 0 < x < R(t)} be the domain in Q, occupied with the liquid

component at the moment t, Ωs,R(t) = {x : R(t) < x < L} be the domain in Q, occupied with
the solid component at the moment t, Ωf,T,R = {(x, t) : 0 < t < T, 0 < x < R(t)} = Gf,R be
domain in QT , occupied with the liquid component, and Ωs,T,R = {(x, t) : 0 < t < T, R(t) <
x < L} = Gs,R be domain in QT , occupied with the solid component, Qf,T = Qf × (0, T ),
Qs,T = Qs × (0, T ), Qf = (0, R0), Qs = (R0, L), 0 < R0 < L.

In the domain Gf,R the liquid satisfies the Stokes equations

µ
∂2vf
∂x2

−
∂pf
∂x

= 0, (1)

∂pf
∂t

+ %f c
2
f

∂vf
∂x

= 0, (2)

for the velocity vf (x, t) and pressure pf (x, t) of a viscous compressible liquid. The dynamics of
the acid concentration c(x, t) in Gf,R is described by diffusion-convection equations

∂c

∂t
= D

∂2c

∂x2
− vf

∂c

∂x
. (3)

The solid component in Gs,R is governed by the Lame’s equation

(λ+ c2s%s)
∂2ws
∂x2

= 0 (4)

for the displacements ws(x, t).
At the free boundary ΓR(t) one has the key condition

dR

dt
(t) = α c

(
R(t), t

)
, α = const > 0, (5)
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expressing the dynamics of the free boundary, and boundary conditions

µ
∂vf
∂x

(
R(t), t

)
− pf

(
R(t), t

)
= (λ+ c2s%s)

∂ws
∂x

(
R(t), t

)
, (6)

vf
(
R(t), t

)
=
dR

dt
(t), (7)

D
∂c

∂x

(
R(t), t

)
= −β c

(
R(t), t

)
, β = const > 0, (8)

expressing the laws of conservation of mass and momentum [8,9].
The problem is ended with boundary conditions

µ
∂vf
∂x

(0, t)− pf (0, t) = −p0(t), c(0, t) = c0 = const > 0, ws(L, t) = 0, (9)

at the known boundaries x = 0 and x = L, and initial conditions

c(x, 0) = c0(x), x ∈ Qf , R(0) = R0, 0 < R0 < L,

pf (x, 0) = p0f (x), x ∈ Qf , pf
(
x, tR(x)

)
= p0f,R(x) = p0f

(
(tR(x)

)
, x ∈ Qs. (10)

In Eqs. (1)–(10) tR(x) is the inverse function to the function x = R(t) for x > R0, µ =
const > 0 is a viscosity of the liquid component, c2f = const > 0 is speed of sound in the liquid,

λ = const > 0 is a Lame’s coefficient, c2s = const > 0 is speed of sound in the solid component,
%f = const > 0 is a density of the liquid component at rest, and %s = const > 0 is a density of
the solid component at rest.

Remark 1. To define pf in the subdomain {(x, t) : R0 < x < R(t), 0 < t < T} of the domain
Gf,R we have to know “initial” condition p0f,R(x) at the curve {(x, t) : x = R(t), 0 < t < T}.
That is why we introduce the inverse function tR(x) to the function x = R(t) for x > R0 in Eq.
(10).

We denote the formulated problem without boundary condition (5) as A(R).
The problem A(R) is obviously divided into two successively solved subproblems: the Dy-

namic Problem A(R), consisting of Eqs. (1), (2), (4), and boundary conditions (6)–(7),
(9), completed with initial conditions (10), which we solve in the first place, and the Diffusion-
Convection Problem A(R), consisting of Eq. (3) and boundary conditions (8), (9), completed
with initial conditions (10).

3 Main results

Theorem 1. Let c0(x) > c∗ =const> 0, c0 ∈ W
2− 2

q
q (Qf ), q > 3, pf (x, 0) = p0f (x), p0f (x) > 0,

p0f ∈ W1
q(Q), p0(t) > 0, p0 ∈ Lq(0, T ), and at (x, t) = (0, 0) and (x, t) = (0, R0) conditions of

concordance c0(0) = c0,
dc0
dx

(R0) = −β c0(R0) are satisfied. Then for any T > 0 the problem

(1)–(10) has a unique weak solution {R(t), vf , pf , c, ws}, such that
dR

dt
> 0,

dR

dt
∈ Lq(0, T ),
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vf ∈ Lq
(
0, T ;W1

q(Ωf (t)
)
, pf ∈ Lq(Gf,R), c ∈ W2,1

q (Gf,R), ws,
∂ws
∂x
∈ Lq

(
0, T ;L∞(Ωs(t)

)
≡ Ys,

and

‖vf‖q,Gf,R + ‖
∂vf
∂x
‖q,Gf,R + ‖pf‖q,Gf,R + ‖ws‖Ys + ‖∂ws

∂x
‖Ys 6 MMp,

c∗ 6 c(x, t) 6M0
c , (x, t) ∈ Gf,R, ‖c‖

(2)
q,Gf,R

6 M1
c . (11)

where Mp = ‖p0f‖q,G + ‖p0‖q,(0,T ), M0
c = max{c0, |c0|(0)Gf,R}, M

1
c = ‖c0‖

(2− 2
q
)

q,Qf
, and the constant

M depend only L and T and finite for finite L and T .

4 Proof of Theorem 1

First of all we rewrite the problem in the new variables

t = t, x =
R(t)

R0
y, for (x, t) ∈ Gf,R,

t = t, x =
L−R(t)

L−R0
y + L

R(t)−R0

L−R0
, for (x, t) ∈ Gs,R,

transforming domains Gf,R and Gs,R onto domains Qf,T and Qs,T correspondingly.
One has for new unknown functions v̄f (y, t) = vf (x, t), p̄f (y, t) = pf (x, t), c̄(y, t) = c(x, t),

w̄s(y, t) = ws(x, t),
∂

∂y

(
µ
R0

R

∂v̄f
∂y
− p̄f

)
= 0, (y, t) ∈ Qf,T ,

µ
R0

R

∂v̄f
∂y

(0, t)− p̄f (0, t) = −p̄0f (0, t), v̄f (R0, t) =
dR

dt
(t),

µ
R0

R

∂v̄f
∂y

(R0, t)− p̄f (R0, t) = (λ+ c2s%s)
∂w̄s
∂y

(R0, t),

(λ+ c2s%s)
∂2w̄s
∂y2

= 0, (y, t) ∈ Qs,T , w̄s(L, t) = 0, (12)

∂c̄

∂t
= D

R2
0

R2

∂2c̄

∂y2
+

(
y
dR

dt
+ v̄f

)
R0

R

∂c̄

∂y
, (y, t) ∈ Qf,T ,

c̄(0, t) = c0, D
R0

R

∂c̄

∂y
(R0, t) = −β c̄(R0, t), t ∈ (0, T ),

c̄(y, 0) = c0(y), y ∈ Qf . (13)

Let M1
r = αM0

c and

M(T ) = {r, dr
dt
∈ Lq(0, T ) : r(0) = R0,

dr

dt
(t) > c∗, ‖

dr

dt
‖q,(0,T ) 6 M1

r }.

For any r ∈M(T ) we consider a problem A(r), consisting of Eqs. (1)–(4) in the known domains
Gf,r and Gs,r, boundary conditions (6)–(9) at known boundaries S0

T = {(x, t) : x = 0, 0 < t <
T}, SLT = {(x, t) : x = L, 0 < t < T}, and Γ(r), and initial conditions (10).
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Lemma 1. Under conditions of Theorem 1 for any r ∈ M the Dynamic Problem A(r) has a
unique solution.

Proof. It is easy to see, that

µ
∂vf
∂x

(
x, t
)
− pf

(
x, t
)

= (λ+ c2s%s)
∂ws
∂x

(x, t) = −p0(t);

pf (x, t) = p0f (x) e−δ t + δ

∫ t

0
e−δ(t−τ)p0(τ) dτ, δ =

%f c
2
f

µ
;

vf (x, t) =
dr

dt
(t) +

1

µ

(
pf (x, t)− p0(t)

)
, ws(x, t) = − p0(t)

(λ+ %s c2s)
(x− L)), (14)

and functions vf , pf and ws satisfy estimates (11) with the function r(t) instead of the function
R(t).

Lemma 2. Under conditions of Theorem 1 for any r ∈ M the Diffusion-Convection Problem
A(r) has a a unique solution c ∈ W2,1

q (Gf,r), where c(x, t) satisfies estimates (11) with corre-
sponding change of the domain Gf,R to the domain Gf,r.

Proof. To prove theorem we consider approximate problems A(rn) in the domain Qf,T for the
function c̄n:

∂c̄n
∂t

= D
r20

(rn)2
∂2c̄n
∂y2

+

(
y

rn

drn
dt

+ v̄f,n
R0

rn

)
∂c̄n
∂y

, (y, t) ∈ Qf,T ,

c̄n(0, t) = c0, D
R0

R

∂c̄n
∂y

(R0, t) = −β c̄n(R0, t), t ∈ (0, T ),

c̄n(y, 0) = c0,n(y), y ∈ Qf . (15)

Here v̄f,n is the solution to the Dynamic problem A(rn),

rn ∈ H1+ γ
2 [0, T ],

drn
dt

(t) > 0, for 0 < t < T, v̄f,n ∈ Hγ, γ
2 (Qf,T ), c0,n ∈ H2+γ(Qf ),

‖rn − r‖(1)q,(0,T ) + ‖v̄f,n − v̄f‖q,Qf,T + ‖c0,n − c0‖
(2− 2

q
)

q,Qf
→ 0 asn→∞.

Theorems 5.3 and 5.4 from §5, Chapter IV in [5] state that the first boundary value problem
(5.2), (5.3) and the problem with directional derivative (5.2), (5.4) have unique solution in the

spaces Hk+γ, k+γ
2 , k ∈ N – integer, k > 0. But there is a remark that if the boundary of the

domain under consideration consists of several disjoint components, then all the results are also
true for problems with different types of boundary conditions on different components.

That is exactly our case, and we may state, that the problem (15) has a unique solution

c̄n ∈ H2+γ, 2+γ
2 (Q̄f,T ).

At the same time, this solution is a solution from the space W2,1
q (Qf,T ) and the following

estimates

c∗ 6 c̄n(y, t) 6 M0
c , (y, t) ∈ Qf,T , ‖c̄n‖

(2)
q,Qf,T

‖ 6 M ‖c̄0,n‖
(2− 2

q
)

q,Qf
, (16)
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are true.

Now we consider the boundary value problem for the difference c̃ = c̄n − c̄m:

∂c̃

∂t
= D

(
r0
rn

)2 ∂2c̃

∂y2
+

(
y

rn
drn

dt
+ v̄nf

R0

rn

)
∂c̃

∂y
+ a1

dr̃

dt
+ a2 r̃, (y, t) ∈ Qf,T ,

c̃(0, t) = 0, D
R0

rn

∂c̃

∂y
(R0, t) + β c̃(R0, t) = b r̃, t ∈ (0, T ),

c̃(y, 0) = c0,n(y)− c0,n(y), y ∈ Qf ;

a1 =

(
y

rn

drn
dt

+ v̄f,n
R0

rn
− y

rm

drm
dt
− v̄f,m

R0

rm

)
∂c̄m
∂y

,

a2 = D

((
r0
rn

)2

−
(
r0
rm

)2
)
∂2c̄m
∂y2

, b = D

(
R0

rn
− R0

rm

)
∂c̄m
∂y

.

Applying estimates (16) we get

‖c̄n − c̄m‖(2)q,Qf,T 6 M

(
‖c̄0,n − c̄0,n‖

(2− 2
q
)

q,Qf
+ ‖v̄f,n − v̄f,m‖q,Qf,T + ‖rn − rm‖(1)q,(0,T )

)
. (17)

In turn, taken into account representation (14) we eventually obtain

‖c̄n − c̄m‖(2)q,Qf,T 6 M
(
‖c̄0,n − c̄0,n‖

(2− 2
q
)

q,Qf
+ ‖rn − rm‖(1)q,(0,T )

)
. (18)

Thus, the sequence {c̄n} is a fundamental one in the space W2,1
q (Qf,T ) and, due to completeness

in this space, converges to some function c̄ from W2,1
q (Qf,T ), that satisfies the problem (13) and

estimates

c∗ 6 c̄(y, t) 6 M0
c , (y, t) ∈ Qf,T , ‖c̄‖

(2)
q,Qf,T

6 M ‖c̄0‖
(2− 2

q
)

q,Qf
,

are valid.

Lemmas 1 and 2 result in Lemma 3.

Lemma 3. Under conditions of Theorem 1 for any r ∈ M the Problem A(r) has a a unique

solution { vf , pf , c, ws}, vf ∈ Lq
(
0, T ;W1

q(Ωf (t)
)
, pf ∈ Lq(Gf,r), c ∈W2,1

q (Gf,r), ws,
∂ws
∂x
∈ Ys,

satisfies estimates (11) with the function r(t) instead of the function R(t).

Let Fv(r)
def
= v̄f (y, t), Fp(r)

def
= p̄f (y, t), and Fc(r)

def
= c̄(y, t), where {v̄f , p̄f , c̄} be the

solution to the problem A(r).

Lemma 4. Operator Fc : W1
q(0, T )→W2,1

q (Qf,T ) is continuous.



Microscopic mathematical model for in-situ leaching 421

Proof. Applying formulas (17) and (14), estimate (18), and embedding W2,1
q (Qf,T ) → C(Qf,T )

(Lemma 3,3, §3, chapter II, [5]) we get

Fp(r) = pf (x, t) = p0f (x) e−δ t + δ

∫ t

0
e−δ(t−τ)p0(τ) dτ,

Fv(r) = vf (x, t) =
dr

dt
(t) +

1

µ

(
pf (x, t)− p0(t)

)
;

Fv(r1)− Fv(r2) =
dr1
dt

(t)− dr2
dt

(t),

‖Fv(r1)− Fv(r2)‖q,Qf,T = ‖r1 − r2‖(1)q,(0,T ),

Fc(r1)− Fc(r2) = R1(t)−R2(t) =

∫ t

0

(
c̄1(R0, τ)− c̄2(R0, τ)

)
dτ,

|R1(t)−R2(t)| 6 αT |c̄1 − c̄2|(0)Qf,T ,

|dR1

dt
(t)− dR2

dt
(t)| = α |c̄1(R0, t)− c̄2(R0, t)|,

‖R1 −R2‖(1)q,(0,T ) 6 αT
1
q |c̄1 − c̄2|(0)Qf,T 6

αT
1
q M ‖c̄1 − c̄2‖(2)q,Qf,T 6 αT

1
q M ‖r1 − r2‖(1)q,(0,T ), (19)

which completes the proof of the lemma.

Now we define the operator, acting by formula

F (r) = R0 + α

∫ t

0
c̄(R0, τ)dτ ≡ R(t), (20)

where c̄(y, t) is a solution to the problem A(r). By construction F (r) transforms the set M into
itself:

R(0) = R0,
dR

dt
(t) = α c̄(R0, t) > 0, |dR

dt
(t)| 6 αM0

c = M1
r , ‖R‖

(1)
q,(0,T ) 6 M1

r .

Lemma 5. The problem (1)–(10) has a unique weak solution {R(t), vf , pf , c, ws},
dR

dt
> 0,

R ∈ W1
q(0, T1), vf ∈ Lq

(
0, T1;W1

q(Ωf (t)
)
, pf ∈ Lq(Ωf,T1,R), c ∈ W2,1

q (Ωf,T1,R), ws,
∂ws
∂x

∈
Lq
(
0, T1;L∞(Ωs(t)

)
≡ Ys, where T1 < (αM)−q.

Proof. Estimate (19) shows that operator F is a contraction operator in the space W(1)
q (0, T1)

for T1 < (αM)−q. Applying Banach fixed point theorem [1] we find a unique fixed point
R ∈ W1

q(0, T1), of the operator F : R = F (R), which define a unique solution to the problem
(1)–(10) for 0 < t < T1.
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Lemma 6. The problem (1)–(10) has a unique weak solution {R(t), vf , pf , c, ws},
dR

dt
> 0,

R ∈ W1
q(0, T ), vf ∈ Lq

(
0, T ;W1

q(Ωf (t)
)
, pf ∈ Lq(Ωf,T,R), c ∈ W2,1

q (Ωf,T,R), ws,
∂ws
∂x

∈
Lq
(
0, T ;L∞(Ωs(t)

)
≡ Ys for any T > 0.

Proof. We may start from the moment t = T1 and solve the problem (1)–(10) for t > T1 with

“initial” data c(x, T1) ∈W
2− 2

q
q

(
Ωf (T1)

)
and pT1f (x), where pT1f (x) = pf (x, T1) for 0 < x < R(T1)

and pT1f (x) = p0f (x) for R(T1) < x < L. Step by step we find moments 0 < T1 < · · · < Tn < · · ·
with 0 < R(T1) < · · · < R(Tn) < · · · < L.

We solve the problem, if for some n, R(Tn) = L, or Tn = T . Otherwise there exists a strictly
monotone sequence {Tn}, such that lim

n→∞
Tn = T∗ < T and lim

n→∞
R(Tn) = R(T∗) = R∗ < L, and

some subsequence {c̄n} (we keep for simplicity the same indices) weakly convergent in W
2− 2

q
q (Qf )

to some function c̄∗ ∈W
2− 2

q
q (Qf ).

The last fact means that we may solve the problem (1)–(10) for t > T∗, that contradicts to
our supposition and prove the theorem.

5 Conclusion

In this paper we have proved the existence and uniqueness of a weak solution on an arbitrary
time interval (0, T ) for a microscopic mathematical model of in-situ leaching of a rare metal. Our
proof was based on the Banach fixed point theorem. Let x = R(t) be a free boundary, separating
domains Ωf,R(t) and Ωf,R(t), occupied by the liquid and solid components correspondingly.

We fix a set M of functions r(t) in the functional space W1
q(0, T ) and for any r ∈M, solve

the problem A(r), where A(r) is the original problem in the known domains Ωf,r(t) and Ωf,r(t),
occupied by liquid and solid components, respectively, but without an additional boundary
condition.

The missing boundary condition forms an operator F , whose fixed points define the solution
to the original problem.

Using differential properties of corresponding solutions, embedding theorems and we prove
the F is a contruction operator on some small interval. Therefore, due to Banach’s fixed point
theorem there exists a unique fixed point, that determines the solution to the original problem.

Step by step we prove that our solution exists on an arbitrary time interval.
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