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Abstract. In this article, we study some existence, uniqueness and Ulam
type stability results for a class of boundary value problem for nonlinear
fractional integro–differential equations with positive constant coefficient
involving the Caputo fractional derivative. The main tools used in our
analysis is based on Banach contraction principle, Schaefer’s fixed point
theorem and Pachpatte’s integral inequality. Finally, results are illustrated
with suitable example.
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1 Introduction

The fractional calculus is an old branch of mathematics, but even then it
is still new. This is an old branch because this branch was born in the
time when Newton and Leibniz had introduced the concept of differential
calculus. On September 30, 1695, Leibniz and L’Hospital discussed the
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derivative of one half order. This was believed to be the moment of starting
of fractional calculus. Since then many mathematicians have contributed
to the basic concept of fractional calculus, see [1, 4, 15, 17, 19, 31, 34, 35, 42]
and the references therein.

Fractional differential equations have been proved to be valuable tools
in the modeling of many phenomena in various fields such as control theory,
signal processing, rheology, fractals, chaotic dynamics, modelling, bioengi-
neering and biomedical applications and so on, for example, see [12,24] and
the references therein. Recently, many researchers studied the fractional
differential and integro-differential equations and obtained many interest-
ing existence and uniqueness results, for detail see [3,6,10,11,25–29,39] and
the references therein.

Recently, many mathematicians have been attracted by the research
field of the stability problems of fractional differential equations and frac-
tional integro-differential equations. This research field started from the
speech given at Wisconsin University by Ulam in 1940. In this speech, Ulam
[32, 33] asked the question about the stability of the functional equation.
Hyers [7] was the first who gave the answer of this question in Banach space.
Rassias [20] studied the Ulam-Hyers stability of linear and nonlinear map-
ping. Jung [8,9] established Ulam-Hyers stability for more general mapping
on restricted domain. In 1993, Obloza [16] made the first study of Ulam-
Hyers stability for linear differential equations. Later many researchers
studied the Ulam type stability, for detail see [2, 5, 21–23,36–38,40,41].

In [30], Tate et al. studied the existence, uniqueness and various types
of Ulam stability of the following nonlinear Caputo fractional integro–
differential equations of order α (0 < α ≤ 1):

cDαy(t) = λy(t) + f

(
t, y(t),

∫ t

0
h(t, s)y(s)ds

)
, t ∈ J := [0, T ], T > 0,

y(0) + g(y) = y0 ∈ R,

where f : J ×R×R→ R and g : C(J,R)→ R are continuous functions.
The above results motivate us and therefore, in this paper, we obtain the

existence, uniqueness and various types of Ulam stability for the following
boundary value problems (BVP for short) for nonlinear fractional integro–
differential equations with constant coefficient λ > 0 of the type:

cDαy(t) = λy(t)+f

(
t, y(t),

∫ t

0
h(t, s)y(s)ds

)
, t ∈ J := [0, T ], T > 0, (1)

ay(0) + by(T ) = c, (2)
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where cDα(0 < α ≤ 1) denotes the Caputo fractional derivative, f : J ×
R ×R → R is a given continuous function, and a, b, c are real constants
with a+ b 6= 0.

The rest of the paper is organized as follows. In Section 2, some defini-
tions, notations and basic results are given. Section 3 is devoted to study
the existence, uniqueness and stability of the problem (1)-(2). Illustrative
example is given in the last section.

2 Preliminaries

In this section, we introduce some definitions, notations and results which
are useful for further discussion. For T > 0 and J = [0, T ], C(J,R) denotes
the Banach space of all continuous functions from J into R with the norm

||y||∞ = sup{||y(t)|| : t ∈ J}.

Suppose L1(J) denotes the space of Lebesgue-integrable functions y : J →
R with the norm

||y||L1 =

∫ T

0
|y(t)| dt.

Definition 1 ( [19]). The Riemann–Liouville fractional integral of a func-
tion h ∈ L1([0, T ],R+) of order α ∈ R+ is defined by

Iαh(t) =
1

Γ(α)

∫ t

0
(t− s)α−1h(s) ds,

where Γ(·) is the Euler gamma function.

Definition 2 ( [12]). The Caputo fractional derivative of order α > 0 of a
function h ∈ L1([0, T ],R+) is defined as

cDαh(t) =
1

Γ(n− α)

∫ t

0
(t− s)n−α−1h(n)(s) ds, n− 1 < α < n,

where n = [α] + 1 and [α] denotes the integer part of the real number α.

Lemma 1 ( [12]). Let α > 0 and n = [α] + 1, then

Iα(cDαf(t)) = f(t)−
n−1∑
i=0

fk(0)

k!
tk,

where fk(t) is the usual derivative of f(t) of order k.
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Lemma 2 ( [19]). Let α > 0. Then the fractional differential equation

cDαh(t) = 0,

has a solution h(t) = c0+c1t+c2t
2+· · ·+cn−1tn−1, where ci, i=0,1,2,. . . ,n-1

are constant and n = [α] + 1.

The following Pachpatte’s inequality plays an important role in obtain-
ing our main results.

Theorem 1 ( [18], p. 39). Let u(t), f(t) and q(t) be nonnegative contin-
uous functions defined on R+, and n(t) be a positive and nondecreasing
continuous function defined on R+ for which the inequality

u(t) ≤ n(t) +

∫ t

0
f(s)

[
u(s) +

∫ s

0
q(τ)u(τ) dτ

]
ds,

holds for t ∈ R+. Then

u(t) ≤ n(t)

[
1 +

∫ t

0
f(s)exp

(∫ s

0
[f(τ) + q(τ)] dτ

)
ds

]
,

for t ∈ R+.

The following definitions are useful in the study of stability results.

Definition 3 ( [5, 23]). The equation (1) is Ulam-Hyers stable if there
exists a real number cf > 0 such that for each ε > 0 and for each solution
z ∈ C1(J,R) satisfying the inequality∣∣∣∣∣

∣∣∣∣∣cDαz(t)− λz(t)− f

(
t, z(t),

∫ t

0
h(t, s)z(s)ds

)∣∣∣∣∣
∣∣∣∣∣ ≤ ε, t ∈ J,

there exists a solution y ∈ C1(J,R) of equation (1) with

||z(t)− y(t)|| ≤ cf ε, t ∈ J.

Definition 4 ( [5,23]). The equation (1) is generalized Ulam-Hyers stable
if there exists ψf ∈ C(R+,R+), ψf (0) = 0, such that for each solution
z ∈ C1(J,R) satisfying the inequality∣∣∣∣∣

∣∣∣∣∣cDαz(t)− λz(t)− f

(
t, z(t),

∫ t

0
h(t, s)z(s)ds

)∣∣∣∣∣
∣∣∣∣∣ ≤ ε, t ∈ J,

there exists a solution y ∈ C1(J,R) of equation (1) with

||z(t)− y(t)|| ≤ ψf (ε), t ∈ J.



Ulam stabilities for nonlinear fractional integro–differential equations 261

Definition 5 ( [5,23]). The equation (1) is Ulam-Hyers-Rassias stable with
respect to ϕ ∈ C(J,R+) if there exists a real number cf > 0 such that for
each ε > 0 and for each solution z ∈ C1(J,R) satisfying the inequality∣∣∣∣∣

∣∣∣∣∣cDαz(t)− λz(t)− f

(
t, z(t),

∫ t

0
h(t, s)z(s)ds

)∣∣∣∣∣
∣∣∣∣∣ ≤ εϕ(t), t ∈ J,

there exists a solution y ∈ C1(J,R) of equation (1) with

||z(t)− y(t)|| ≤ cf εϕ(t), t ∈ J.

Definition 6 ( [5,23]). The equation (1) is generalized Ulam-Hyers-Rassias
stable with respect to ϕ ∈ C(J,R+) if there exists a real number cf,ϕ > 0
such that for each solution z ∈ C1(J,R) satisfying the inequality∣∣∣∣∣

∣∣∣∣∣cDαz(t)− λz(t)− f

(
t, z(t),

∫ t

0
h(t, s)z(s)ds

)∣∣∣∣∣
∣∣∣∣∣ ≤ ϕ(t), t ∈ J,

there exists a solution y ∈ C1(J,R) of equation (1) with

||z(t)− y(t)|| ≤ cf,ϕϕ(t), t ∈ J.

Remark 1 ( [5, 23]). A function z ∈ C1(J,R) satisfies the inequality∣∣∣∣∣
∣∣∣∣∣cDαz(t)− λz(t)− f

(
t, z(t),

∫ t

0
h(t, s)z(s)ds

)∣∣∣∣∣
∣∣∣∣∣ ≤ ε, t ∈ J,

if and only if there exists a function g ∈ C(J,R) (which depends on solution
y) such that
(i) ||g(t)|| ≤ ε, ∀t ∈ J ;

(ii) cDαz(t) = λz(t) + f

(
t, z(t),

∫ t
0 h(t, s)z(s)ds

)
+ g(t), t ∈ J.

Remark 2. Clearly,
(i) Definition 3 implies Definition 4.
(ii) Definition 5 implies Definition 6.

Remark 3. A solution satisfying the inequality∣∣∣∣∣
∣∣∣∣∣cDαz(t)− λz(t)− f

(
t, z(t),

∫ t

0
h(t, s)z(s)ds

)∣∣∣∣∣
∣∣∣∣∣ ≤ ε, t ∈ J,

is called an fractional ε−solution of the nonlinear fractional integro–differential
equation (1).
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3 Existence and Ulam-Hyers stability of the bound-
ary value problem

In this section we obtain existence, uniqueness and stability results for the
problem (1)-(2). Now we introduce the following set of conditions:

(H1) There exists a constant L > 0 such that

||f(t, x, y)− f(t, x̄, ȳ)|| ≤ L(||x− x̄|| + ||y − ȳ||), for each t ∈ J and
x, y, x̄, ȳ ∈ R.

(H2) The function f : J ×R×R→ R is continuous.

(H3) There exists a constant af > 0 such that ||f(t, x, y)|| ≤ af (1 + ||x||+
||y||), for each t ∈ J and x, y ∈ R.

Lemma 3 ( [13]). Let 0 < α < 1 and let h : J → R be continuous. A
function y is a solution of the fractional integral equation

y(t) = y0 +
1

Γ(α)

∫ t

0
(t− s)α−1h(s) ds,

if and only if y is a solution of the initial value problem for the fractional
differential equation

cDαy(t) = h(t), t ∈ J = [0, T ], T > 0,

y(0) = y0.

Lemma 4 ( [3]). Let 0 < α < 1 and let h : J → R be continuous. A
function y is a solution of the fractional integral equation

y(t) =
1

Γ(α)

∫ t

0
(t− s)α−1h(s) ds− 1

a+ b

[
b

Γ(α)

∫ T

0
(T − s)α−1h(s) ds− c

]
,

if and only if y is a solution of the fractional BVP

cDαy(t) = h(t), t ∈ J = [0, T ], T > 0,

ay(0) + by(T ) = c.

As a consequence of Lemma 3 and Lemma 4 and [14], we have the
following result which is useful in our main results.
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Lemma 5. If f : J × R × R → R is a continuous function, then the
problem (1)-(2) is equivalent to the following integral equation

y(t) = Ã+
λ

Γ(α)

∫ t

0
(t− s)α−1y(s) ds

+
1

Γ(α)

∫ t

0
(t− s)α−1f

(
s, y(s),

∫ s

0
h(t, τ)y(τ)dτ

)
ds, (3)

for t ∈ J, and

Ã =
1

a+ b

[
c− bλ

Γ(α)

∫ T

0
(T − s)α−1y(s) ds

− b

Γ(α)

∫ T

0
(T − s)α−1f

(
s, y(s),

∫ s

0
h(t, τ)y(τ)dτ

)
ds

]
.

Theorem 2. Assume that (H1) holds. If[
(λ+ L)Tα + LhTT

α+1

Γ(α+ 1)

](
1 +

|b|
|a+ b|

)
< 1, (4)

where hT = sup{|h(t, s)| |0 ≤ s ≤ t ≤ T}, then the BVP (1)-(2) has a
unique solution on J.

Proof. Transform the problem (1)-(2) into a fixed point problem. Consider
the operator F : C(J,R)→ C(J,R) defined by

F (y)(t) =
λ

Γ(α)

∫ t

0
(t− s)α−1y(s) ds

+
1

Γ(α)

∫ t

0
(t− s)α−1f

(
s, y(s),

∫ s

0
h(t, τ)y(τ)dτ

)
ds

− 1

a+ b

[
bλ

Γ(α)

∫ T

0
(T − s)α−1y(s) ds

+
b

Γ(α)

∫ T

0
(T − s)α−1f

(
s, y(s),

∫ s

0
h(t, τ)y(τ)dτ

)
ds− c

]
. (5)

Let x, y ∈ C(J,R). Then for each t ∈ J, we have

||F (x)(t)− F (y)(t)||

≤ λ

Γ(α)

∫ t

0
(t− s)α−1 ||x(s)− y(s)|| ds
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+
1

Γ(α)

∫ t

0
(t− s)α−1

∣∣∣∣∣∣∣∣f
(
s, x(s),

∫ s

0
h(t, τ)x(τ)dτ

)

−f

(
s, y(s),

∫ s

0
h(t, τ)y(τ)dτ

)∣∣∣∣∣∣∣∣ ds
+

|b|λ
Γ(α) |a+ b|

∫ T

0
(T − s)α−1 ||x(s)− y(s)|| ds

+
|b|

Γ(α) |a+ b|

∫ T

0
(T − s)α−1

∣∣∣∣∣∣∣∣f
(
s, x(s),

∫ s

0
h(t, τ)x(τ)dτ

)

−f

(
s, y(s),

∫ s

0
h(t, τ)y(τ)dτ

)∣∣∣∣∣∣∣∣ ds
≤ (λ+ L)

Γ(α)

∫ t

0
(t− s)α−1 ||x(s)− y(s)|| ds

+
LhT
Γ(α)

∫ t

0
(t− s)α−1

(∫ s

0
||x(τ)− y(τ)|| dτ

)
ds

+
|b| (λ+ L)

Γ(α) |a+ b|

∫ T

0
(T − s)α−1 ||x(s)− y(s)|| ds

+
|b|LhT

Γ(α) |a+ b|

∫ T

0
(T − s)α−1

(∫ s

0
||x(τ)− y(τ)|| dτ

)
ds

≤
[

(λ+ L)Tα + LhTT
α+1

Γ(α+ 1)

](
1 +

|b|
|a+ b|

)
||x− y||∞ .

Thus

||F (x)− F (y)||∞ ≤
[

(λ+ L)Tα + LhTT
α+1

Γ(α+ 1)

](
1 +

|b|
|a+ b|

)
||x− y||∞ .

Thus, F is a contraction due to the inequality (4).
As a consequence of Banach contraction principle, it is deduced that F

has a unique fixed point which is just the unique solution of the problem
(1)-(2).

The second result is based on Schaefer’s fixed point theorem.

Theorem 3. Assume that (H2) and (H3) hold. Then the BVP (1)-(2) has
at least one solution on J.

Proof. Let the operator F be defined as in (5). We complete the proof in
the following four steps.

Step 1: F is continuous.
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Let {yn} be a sequence such that yn → y in C(J,R). Then for each
t ∈ J , we have

||F (yn)(t)− F (y)(t)||

≤ λTα

Γ(α+ 1)
||yn(s)− y(s)||∞

+
Tα

Γ(α+ 1)

∣∣∣∣∣∣∣∣f
(
s, yn(s),

∫ s

0
h(t, τ)yn(τ)dτ

)

− f

(
s, y(s),

∫ s

0
h(t, τ)y(τ)dτ

)∣∣∣∣∣∣∣∣
∞

+
|b|λTα

Γ(α+ 1) |a+ b|
||yn(s)− y(s)||∞

+
|b|Tα

Γ(α+ 1) |a+ b|

∣∣∣∣∣∣∣∣f
(
s, yn(s),

∫ s

0
h(t, τ)yn(τ)dτ

)

− f

(
s, y(s),

∫ s

0
h(t, τ)y(τ)dτ

)∣∣∣∣∣∣∣∣
∞

≤ λ

Γ(α+ 1)

(
1 +

|b|
|a+ b|

)
Tα ||yn(s)− y(s)||∞

+
1

Γ(α+ 1)

(
1 +

|b|
|a+ b|

)
Tα
∣∣∣∣∣∣∣∣f
(
s, yn(s),

∫ s

0
h(t, τ)yn(τ)dτ

)

− f

(
s, y(s),

∫ s

0
h(t, τ)y(τ)dτ

)∣∣∣∣∣∣∣∣
∞

Since f is a continuous function and yn → y , we have

||F (yn)(t)− F (y)(t)||∞ → 0,

as n→∞. Consequently, F is continuous.

Step 2: F maps bounded sets into bounded sets in C(J,R).

We need to show that for any µ∗ > 0, there exists a positive constant
l such that for each y ∈ Bµ∗ = {y ∈ C(J,R) : ||y||∞ ≤ µ∗}, we have
||F (y)||∞ ≤ l.

By condition (H3), we have for each t ∈ [0, T ],

||F (y)|| ≤ λ

Γ(α)

∫ t

0
(t− s)α−1 ||y(s)|| ds



266 S.R. Tate, H.T. Dinde

+
1

Γ(α)

∫ t

0
(t− s)α−1

∣∣∣∣∣
∣∣∣∣∣f
(
s, y(s),

∫ s

0
h(t, τ)y(τ)dτ

)∣∣∣∣∣
∣∣∣∣∣ ds

+
|b|λ

|a+ b|Γ(α)

∫ T

0
(T − s)α−1 ||y(s)|| ds

+
|b|

|a+ b|Γ(α)

∫ T

0
(T − s)α−1

∣∣∣∣∣
∣∣∣∣∣f
(
s, y(s),

∫ s

0
h(t, τ)y(τ)dτ

)∣∣∣∣∣
∣∣∣∣∣ ds

+
|c|
|a+ b|

≤ λµ∗

Γ(α)

∫ t

0
(t− s)α−1 ds

+
af (1 + ||y||+

∫ s
0 |h(t, τ)| ||y|| dτ)

Γ(α)

∫ t

0
(t− s)α−1 ds

+
|b|λµ∗

|a+ b|Γ(α)

∫ T

0
(T − s)α−1 ds

+
af (1 + ||y||+

∫ s
0 |h(t, τ)| ||y|| dτ) |b|

|a+ b|Γ(α)

∫ T

0
(T − s)α−1 ds+

|c|
|a+ b|

≤ λµ∗Tα

Γ(α+ 1)

[
1 +

|b|
|a+ b|

]
+
af (1 + µ∗ + µ∗hTT )Tα

Γ(α+ 1)

[
1 +

|b|
|a+ b|

]
+
|c|
|a+ b|

.

Thus

||F (y)||∞ ≤
[
λµ∗Tα

Γ(α+ 1)
+
af (1 + µ∗ + µ∗hTT )Tα

Γ(α+ 1)

] [
1 +

|b|
|a+ b|

]
+
|c|
|a+ b|

:= l.

Step 3: F maps bounded sets into equicontinuous sets of C(J,R) .
Let t1, t2 ∈ (0, T ], t1 < t2, Bµ∗ be a bounded set in C(J,R) as in step 2,
and let y ∈ Bµ∗ . Then

||F (y)(t1)− F (y)(t2)||

≤ λ

Γ(α)

∫ t1

0
{(t1 − s)α−1 − (t2 − s)α−1}||y(s)|| ds

+
1

Γ(α)

∫ t1

0
{(t1 − s)α−1 − (t2 − s)α−1}||f

(
s, y(s),

∫ s

0
h(t, τ)y(τ)dτ

)
|| ds
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− λ

Γ(α)

∫ t2

t1

(t2 − s)α−1||y(s)|| ds

− 1

Γ(α)

∫ t2

t1

(t2 − s)α−1||f

(
s, y(s),

∫ s

0
h(t, τ)y(τ)dτ

)
|| ds

≤ λ||y(s)||
Γ(α)

∫ t1

0
{(t1 − s)α−1 − (t2 − s)α−1} ds

+
af (1 + ||y(s)||+

∫ s
0 |h(t, τ)|||y(τ)||dτ)

Γ(α)

∫ t1

0
{(t1 − s)α−1 − (t2 − s)α−1} ds

+
λ||y(s)||

Γ(α)

∫ t2

t1

(t2 − s)α−1 ds

+
af (1 + ||y(s)||+

∫ s
0 |h(t, τ)|||y(τ)||dτ)

Γ(α)

∫ t2

t1

(t2 − s)α−1 ds

≤
(λµ∗ + af (1 + µ∗ + µ∗hTT ))

Γ(α+ 1)
{2(t2 − t1)α + (tα1 − tα2 )}.

As t1 → t2, the right-hand side of the above inequality tends to zero. As
a consequence of steps 1 to 3 together with the Arzelà-Ascoli theorem, we
can conclude that F : C(J,R) → C(J,R) is continuous and completely
continuous.

Step 4: A priori bounds. Now it remains to show that the set

E = {y ∈ C(J,R) : y = βF (y), for some β ∈ (0, 1)},

is bounded.

Let y ∈ E , then y = βF (y), for some β ∈ (0, 1). Thus, for each t ∈ J ,
we have

y(t) = β

{
λ

Γ(α)

∫ t

0
(t− s)α−1y(s) ds

+
1

Γ(α)

∫ t

0
(t− s)α−1f

(
s, y(s),

∫ s

0
h(t, τ)y(τ)dτ

)
ds

− 1

a+ b

[
bλ

Γ(α)

∫ T

0
(T − s)α−1y(s) ds

+
b

Γ(α)

∫ T

0
(T − s)α−1f

(
s, y(s),

∫ s

0
h(t, τ)y(τ)dτ

)
ds− c

]}
. (6)
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From condition (H3), for each t ∈ J ,we have

||F (y)(t)|| ≤ λ

Γ(α)

∫ t

0
(t− s)α−1 ||y(s)|| ds

+
1

Γ(α)

∫ t

0
(t− s)α−1

∣∣∣∣∣
∣∣∣∣∣f
(
s, y(s),

∫ s

0
h(t, τ)y(τ)dτ

)∣∣∣∣∣
∣∣∣∣∣ ds

+
|b|λ

|a+ b|Γ(α)

∫ T

0
(T − s)α−1 ||y(s)|| ds

+
|b|

|a+ b|Γ(α)

∫ T

0
(T − s)α−1

∣∣∣∣∣
∣∣∣∣∣f
(
s, y(s),

∫ s

0
h(t, τ)y(τ)dτ

)∣∣∣∣∣
∣∣∣∣∣ ds

+
|c|
|a+ b|

≤ λµ∗

Γ(α)

∫ t

0
(t− s)α−1 ds+

af (1 + µ∗ + µ∗hTT )

Γ(α)

∫ t

0
(t− s)α−1ds

+
|b|λµ∗

|a+ b|Γ(α)

∫ T

0
(T − s)α−1ds

+
af (1 + µ∗ + µ∗hTT ) |b|

|a+ b|Γ(α)

∫ T

0
(T − s)α−1ds+

|c|
|a+ b|

≤ λµ∗Tα

Γ(α+ 1)

[
1 +

|b|
|a+ b|

]
+
af (1 + µ∗ + µ∗hTT )Tα

Γ(α+ 1)

[
1 +

|b|
|a+ b|

]
+
|c|
|a+ b|

.

Thus for every t ∈ J , we have

||F (y)||∞ ≤
[
λµ∗Tα

Γ(α+ 1)
+
af (1 + µ∗ + µ∗hTT )Tα

Γ(α+ 1)

] [
1 +

|b|
|a+ b|

]
+
|c|
|a+ b|

:= R.

This shows that the set E is bounded. Now applying Schaefer’s fixed point
theorem, we deduce that F has a fixed point which is a solution of the
problem (1)-(2).

Theorem 4. Assume that (H1) and inequality (4) hold. Then the BVP
(1)-(2) is Ulam-Hyers stable.

Proof. Let ε > 0 and let z ∈ C1(J,R) be a function which satisfies the
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inequality:∣∣∣∣∣
∣∣∣∣∣cDαz(t)− λz(t)− f

(
t, z(t),

∫ s

0
h(t, τ)z(τ)dτ

)∣∣∣∣∣
∣∣∣∣∣ ≤ ε, for any t ∈ J (7)

and let y ∈ C(J,R) be the unique solution of the following Cauchy problem

cDαy(t) = λy(t) + f

(
t, y(t),

∫ s

0
h(t, τ)y(τ)dτ

)
, t ∈ J ; 0 < α ≤ 1

y(0) = z(0), y(T ) = z(T ).

Using Lemma 5, we obtain

y(t) = Ãy +
λ

Γ(α)

∫ t

0
(t− s)α−1y(s) ds

+
1

Γ(α)

∫ t

0
(t− s)α−1f

(
s, y(s),

∫ s

0
h(t, τ)y(τ)dτ

)
ds,

and

Ãy =
1

a+ b

[
c− bλ

Γ(α)

∫ T

0
(T − s)α−1y(s) ds

− b

Γ(α)

∫ T

0
(T − s)α−1f

(
s, y(s),

∫ s

0
h(t, τ)y(τ)dτ

)
ds

]
.

If y(T ) = z(T ) and y(0) = z(0) then we find∣∣∣∣∣∣Ãy − Ãz∣∣∣∣∣∣ ≤ |b|λ
Γ(α) |a+ b|

∫ T

0
(T − s)α−1 ||y(s)− z(s)|| ds

+
|b|

Γ(α) |a+ b|

∫ T

0
(T − s)α−1L(||y(s)− z(s)||

+

∫ s

0
|h(t, τ)| ||y(τ)− z(τ)|| dτ)ds

≤ |b| (λ+ L)

Γ(α) |a+ b|

∫ T

0
(T − s)α−1 ||y(s)− z(s)|| ds

+
|b|LhT

Γ(α) |a+ b|

∫ T

0
(T − s)α−1(

∫ s

0
||y(τ)− z(τ)|| dτ) ds

≤ |b| (λ+ L)

Γ(α) |a+ b|

∫ T

0
(T − s)α−1 ||y(s)− z(s)|| ds
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+
|b|LhTT

Γ(α) |a+ b|

∫ T

0
(T − s)α−1 ||y(s)− z(s)|| ds

=

[
|b| (λ+ L)

|a+ b|
+
|b|LhTT
|a+ b|

]
Iα ||y(T )− z(T )|| = 0

Thus
Ãy = Ãz.

Then we have

y(t) = Ãz +
λ

Γ(α)

∫ t

0
(t− s)α−1y(s) ds

+
1

Γ(α)

∫ t

0
(t− s)α−1f

(
s, y(s),

∫ s

0
h(t, τ)y(τ)dτ

)
ds,

on integration of the inequality (7), we obtain∣∣∣∣∣∣∣∣z(t)− Ãz − λ

Γ(α)

∫ t

0
(t− s)α−1z(s) ds

− 1

Γ(α)

∫ t

0
(t− s)α−1f

(
s, z(s),

∫ s

0
h(t, τ)z(τ)dτ

)
ds

∣∣∣∣∣∣∣∣
≤ εtα

Γ(α+ 1)
. (8)

For any t ∈ J we have

||z(t)− y(t)|| ≤
∣∣∣∣∣∣∣∣z(t)− Ãz − λ

Γ(α)

∫ t

0
(t− s)α−1z(s) ds

− 1

Γ(α)

∫ t

0
(t− s)α−1f

(
s, z(s),

∫ s

0
h(t, τ)z(τ)dτ

)
ds

∣∣∣∣∣∣∣∣
+

λ

Γ(α)

∫ t

0
(t− s)α−1 ||z(s)− y(s)|| ds

+
1

Γ(α)

∫ t

0
(t− s)α−1

∣∣∣∣∣∣∣∣f
(
s, z(s),

∫ s

0
h(t, τ)z(τ)dτ

)

− f

(
s, y(s),

∫ s

0
h(t, τ)y(τ)dτ

)∣∣∣∣∣∣∣∣ ds.
Using inequality (8) and condition (H1), we obtain

||z(t)− y(t)|| ≤ εtα

Γ(α+ 1)
+

λ

Γ(α)

∫ t

0
(t− s)α−1 ||z(s)− y(s)|| ds
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+
1

Γ(α)

∫ t

0
(t− s)α−1L

(
||z(s)− y(s)||

+

∫ s

0
|h(t, τ)| ||z(τ)− y(τ)|| dτ

)
ds

≤ εtα

Γ(α+ 1)
+

(λ+ L)

Γ(α)

∫ t

0
(t− s)α−1 ||z(s)− y(s)|| ds

+
LhT
Γ(α)

∫ t

0
(t− s)α−1

(∫ s

0
||z(τ)− y(τ)|| dτ

)
ds,

≤ εtα

Γ(α+ 1)
+

∫ t

0

(λ+ L)

Γ(α)
(T − s)α−1

[
||z(s)− y(s)||

+

∫ s

0

LhT
(λ+ L)

||z(τ)− y(τ)|| dτ
]
ds. (9)

Applying Pachpatte’s inequality given in the Theorem 1 to the inequality
(9) with u(t) = ||z(t)− y(t)||,

n(t) =
εtα

Γ(α+ 1)
, f(s) =

(λ+ L)

Γ(α)
(T − s)α−1, q(τ) =

LhT
(λ+ L)

,

we obtain

||z(t)− y(t)|| ≤ εtα

Γ(α+ 1)

[
1 +

∫ t

0

(λ+ L)

Γ(α)
(T − s)α−1

× exp

(∫ s

0

{
(λ+ L)

Γ(α)
(T − τ)α−1 +

LhT
(λ+ L)

}
dτ

)
ds

]
≤ Cε,

for all t ∈ J , where

C =
Tα

Γ(α+ 1)

[
1 +

∫ T

0

(λ+ L)

Γ(α)
(T − s)α−1

× exp

(∫ s

0

{
(λ+ L)

Γ(α)
(T − τ)α−1 +

LhT
(λ+ L)

}
dτ

)
ds

]
.

We conclude the problem (1)-(2) is Ulam-Hyers stable.

Corollary 1. If f in the problem (1)-(2) satisfies the condition (H1) and
the inequality (4) holds, then the problem (1)-(2) is generalized Ulam-Hyers
stable.

Theorem 5. Assume that (H1) and inequality (4) hold. Further suppose
there exists an increasing function ϕ ∈ C(J,R+) and there exists κϕ > 0
such that for any t ∈ J

Iαϕ(t) ≤ κϕϕ(t)
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are satisfied. Then the BVP (1)-(2) is Ulam-Hyers-Rassias stable.

Proof. Let z ∈ C1(J,R) be satisfies the following inequality:∣∣∣∣∣
∣∣∣∣∣cDαz(t)− λz(t)− f

(
t, z(t),

∫ s

0
h(t, τ)z(τ)dτ

)∣∣∣∣∣
∣∣∣∣∣ ≤ εϕ(t), (10)

for any t ∈ J, ε > 0. Let y ∈ C(J,R) be the unique solution of the following
Cauchy problem

cDαy(t) = λy(t) + f

(
t, y(t),

∫ s

0
h(t, τ)y(τ)dτ

)
, t ∈ J ; 0 < α ≤ 1,

y(0) = z(0), y(T ) = z(T ).

By Lemma 5, we have

y(t) = Ãz +
λ

Γ(α)

∫ t

0
(t− s)α−1y(s) ds

+
1

Γ(α)

∫ t

0
(t− s)α−1f

(
s, y(s),

∫ s

0
h(t, τ)y(τ)dτ

)
ds,

and

Ãz =
1

a+ b

[
c− bλ

Γ(α)

∫ T

0
(T − s)α−1z(s) ds

− b

Γ(α)

∫ T

0
(T − s)α−1f

(
s, z(s),

∫ s

0
h(t, τ)z(τ)dτ

)
ds

]
.

Integrating both sides of inequality (10), we obtain∣∣∣∣∣∣∣∣z(t)− Ãz − λ

Γ(α)

∫ t

0
(t− s)α−1z(s) ds

− 1

Γ(α)

∫ t

0
(t− s)α−1f

(
s, z(s),

∫ s

0
h(t, τ)z(τ)dτ

)
ds

∣∣∣∣∣∣∣∣
≤ ε

Γ(α)

∫ t

0
(t− s)α−1ϕ(t)ds = εIαϕ(t) ≤ εκϕϕ(t). (11)

On the other hand, we have

||z(t)− y(t)|| ≤
∣∣∣∣∣∣∣∣z(t)− Ãz − λ

Γ(α)

∫ t

0
(t− s)α−1z(s) ds
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− 1

Γ(α)

∫ t

0
(t− s)α−1f

(
s, z(s),

∫ s

0
h(t, τ)z(τ)dτ

)
ds

∣∣∣∣∣∣∣∣
+

λ

Γ(α)

∫ t

0
(t− s)α−1 ||z(s)− y(s)|| ds

+
1

Γ(α)

∫ t

0
(t− s)α−1

∣∣∣∣∣∣∣∣f
(
s, z(s),

∫ s

0
h(t, τ)z(τ)dτ

)

− f

(
s, y(s)

∫ s

0
h(t, τ)y(τ)dτ

)∣∣∣∣∣∣∣∣ ds.
Using inequality (11) and condition (H1), we obtain

||z(t)− y(t)|| ≤ εκϕϕ(t) +
λ

Γ(α)

∫ t

0
(t− s)α−1 ||z(s)− y(s)|| ds

+
1

Γ(α)

∫ t

0
(t− s)α−1L

(
||z(s)− y(s)||

+

∫ s

0
|h(t, τ)| ||z(τ)− y(τ)|| dτ

)
ds

≤ εκϕϕ(t) +
(λ+ L)

Γ(α)

∫ t

0
(t− s)α−1 ||z(s)− y(s)|| ds

+
LhT
Γ(α)

∫ t

0
(t− s)α−1(

∫ s

0
||z(τ)− y(τ)|| dτ) ds

≤ εκϕϕ(t) +

∫ t

0

(λ+ L)

Γ(α)
(T − s)α−1

[
||z(s)− y(s)||

+

∫ s

0

LhT
(λ+ L)

||z(τ)− y(τ)|| dτ
]
ds.

By applying Pachpatte’s inequality given in the Theorem 1 with u(t) =
||z(t)− y(t)|| ,

n(t) = εκϕϕ(t), f(s) =
(λ+ L)

Γ(α)
(T − s)α−1, q(τ) =

LhT
(λ+ L)

,

we obtain

||z(t)− y(t)|| ≤ εκϕϕ(t)

[
1 +

∫ t

0

(λ+ L)

Γ(α)
(T − s)α−1

× exp

(∫ s

0

{
(λ+ L)

Γ(α)
(T − τ)α−1 +

LhT
(λ+ L)

}
dτ

)
ds

]
≤ Cεϕ(t),
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for all t ∈ J , where

C = κϕ

[
1 +

∫ T

0

(λ+ L)

Γ(α)
(T − s)α−1

× exp

(∫ s

0

{
(λ+ L)

Γ(α)
(T − τ)α−1 +

LhT
(λ+ L)

}
dτ

)
ds

]
.

The proof is complete.

Corollary 2. Under the assumptions of Theorem 5, the problem (1)-(2) is
generalized Ulam-Hyers-Rassias stable.

4 Examples

In this section, we illustrate our main results with the help of following
example.

Example 1. Consider

cD
1
2x(t) =

1

10
x(t) +

x(t) + 1

t2 + 9
+

1

9

∫ t

0

x(s)

(2 + t)2
ds, t ∈ [0, 1] (12)

x(0) + x(1) = 0. (13)

Define

f(t, x(t), Hx(t)) =
x(t) + 1

t2 + 9
+

1

9
Hx(t), t ∈ [0, 1],

α = 1
2 , λ = 1

10 , where

Hx(t) =

∫ t

0

1

(2 + t)2
x(s)ds.

Clearly, the function f is continuous. For any x1, x2 ∈ R and t ∈ [0, 1]

||f(t, x1, Hx1)− f(t, x2, Hx2)|| ≤
1

9

[
||x1 − x2||+ ||Hx1 −Hx2||

]
(14)

Hence condition (H1) is satisfied with L = 1
9 .

As hT = 1
4 , a = b = T = 1, c = 0 and α = 1

2 we have[
(λ+ L)Tα + LhTT

α+1

Γ(α+ 1)

](
1 +

|b|
|a+ b|

)
=

[
( 1
10 + 1

9) + 1
36

Γ(12 + 1)

](
1 +

1

2

)
=

43

60
√
π
< 1.

So all conditions of Theorem 2 hold. Thus Theorem 2 implies that the
problem (12)-(13) has a unique solution on [0,1]. Moverover, Theorem 4
implies that the problem (12)-(13) is Ulam-Hyers stable.
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