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Abstract. In this paper, an interior-point algorithm for P∗(κ)-Linear Com-
plementarity Problem (LCP) based on a new parametric trigonometric ker-
nel function is proposed. By applying strictly feasible starting point con-
dition and using some simple analysis tools, we prove that our algorithm
has O((1 + 2κ)

√
n log n log n

ε ) iteration bound for large-update methods,
which coincides with the best known complexity bound. Moreover, numer-
ical results confirm that our new proposed kernel function is doing well in
practice in comparison with some existing kernel functions in the literature.

Keywords: kernel function, linear complementarity problem, primal-dual interior

point methods, large-update methods.
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1 Introduction

Polynomial time Interior Point Method (IPM) idea was first investigated by
Karmarkar in [16] for solving Linear Optimization (LO) problems. Later,
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Kojima et al. [22] and Megiddo [27] developed this idea to primal-dual
IPMs for LO problems. Kojima et al. in [21] first proposed the existence
and uniqueness of the central path for any P∗(κ)-Linear Complementarity
Problem (LCP). Nesterov and Nemirovski in [28] extended this algorithm
to general convex optimization problems such as Convex Quadratic (CQ)
problems, Second Order Cone Optimization (SOCO) problems, Semidefi-
nite Optimization (SDO) problems and nonlinear complementarity prob-
lems.

The goal of this paper is to focus on the linear complementarity problem
formulated in the standard from as:{

s = Mx+ q, (x, s) ≥ 0,
xs = 0,

(1)

where, M is real n × n matrix, q ∈ Rn and xs in the second equation
denotes a coordinate-wise (Hadamard) product of vectors x and s. Note
that problem (1) is named P∗(κ)-LCP if M is a P∗(κ)-matrix.

Definition 1. Suppose that κ ≥ 0. A matrix M ∈ Rn×n is called a P∗(κ)-
matrix if, for any real vector x ∈ Rn, the following inequality holds:

(1 + 4κ)
∑

i∈J+(x)

xi(Mx)i +
∑

i∈J−(x)

xi(Mx)i ≥ 0,

where

J+(x) = {i ∈ J : xi(Mx)i ≥ 0}, J−(x) = {i ∈ J : xi(Mx)i < 0},

and

J = {1, 2, . . . , n}.

Corollary 1. Every P∗(0)-matrix is positive semidefinite.

Definition 2. A matrix M ∈ Rn×n is called P∗ matrix if it is a P∗(κ)
matrix for some κ ≥ 0, that is:

P∗ =
⋃
κ≥0

P∗(κ).

Lemma 1 (Lemma 4.1 in [21]). Suppose that M ∈ Rn×n is a P∗(κ) matrix,
thus the matrix M ′ is a nonsingular matrix for any positive diagonal matrix
X,S ∈ Rn×n, where

M ′ =

(
−M I
S X,

)
,

X = diag(x) and S = diag(s).
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As a consequence of Lemma 1, one has the following result.

Corollary 2. Suppose that M ∈ Rn×n is a P∗(κ) matrix, and two vectors
x, s ∈ Rn. Thus for any vector a ∈ Rn, the system{

−M∆x+ ∆s = 0,
S∆x+X∆s = a,

has a unique solution as (∆x,∆s), where X = diag(x) and S = diag(s).

According to records, there are several optimization problems that can
be formulated as a P∗(κ)-LCP, for example the Karush-Kuhn-Tucker (KKT)
optimality conditions for linear optimization and convex quadratic opti-
mization problems, the optimal invariant capital stock problem, the market
equilibrium problem and the optimal stopping problem [38]. For more data
on the LCP and its applications, we refer to [8, 15].

A close look at the IPM literatures tells us that by using kernel func-
tions we can get the best known complexity bound. Important work in
this direction was done by Peng et al. in [29]. Subsequently, they con-
structed a new variant of the feasible interior-point algorithm for LO prob-
lem based on Self-Regular (SR) barrier (proximity) function and showed
that their algorithm in the large neighborhood of the central path has
O(
√
n log n log n

ε ) as the worst case iteration bound. Then, they developed
their algorithm to general convex optimization problems such as Comple-
mentarity Problem (CP), SOCO, and SDO problems. Primal-dual IPMs
for LO problems based on the so-called eligible kernel functions, which are
not necessarily SR-barrier function, were first studied by Bai et al. in [1].
Based on this class of kernel functions, they showed that their algorithm
enjoys O(

√
n log n log n

ε ) as the worst case iteration bound for large-update
methods. In recent papers, several interior point algorithms have been con-
structed. A comparative study on the kernel functions for LCP is provided
in [5–7,23,24].

The primal-dual IPMs based on trigonometric kernel functions received
much more attention in recent works. This kind of barrier functions was
first proposed by El Ghami et al. [9]. They derived the worst case itera-

tion complexity as O(n
3
4 log n

ε ) for large-update methods. Later, Kherifam
in [17] suggested an interior point algorithm for solving SDO problems
based on a new trigonometric kernel function and derived the same com-
plexity as in [9]. Later on, El Ghami [10] investigated an IPM for solving
P∗(κ)-LCP based on the trigonometric kernel function which was previ-
ously introduced for LO in [9]. He derived the worst case iteration bound

as O
(

(1 + 2κ)n
3
4 log n

ε

)
for large-update methods.
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To improve iteration bound of primal-dual IPMs based on the trigono-
metric kernel function in a large neighborhood of the central path, Peyghami
et al. in [32] introduced another new trigonometric kernel function and

showed that their algorithm enjoysO
(
n

2
3 log n

ε

)
iteration complexity bound

which improved the obtained results by El Ghami et al. [9, 10] and Khier-
fam [17], but it is not the best known iteration complexity bound. Then
Peyghami and Fathi in [31] proposed another trigonometric kernel function.
They derived the worst case iteration complexity bound asO(

√
n(log n)2 log n

ε )
for large-update methods. Recently, an interior point algorithm for solving
P∗(κ)-linear complementarity problem based on the trigonometric kernel
function was introduced by Fathi et al. [11]. They obtained the best known
complexity bound for large-update methods, that is, O((1+2κ)

√
n log n log n

ε ).
In recent years, several interior point algorithms based on the trigonometric
kernel functions have been proposed [3,4,11,13,14,18–20,25,26,31,32,34].
Based on the some of them, the best known iteration complexity bound for
large update methods is derived [3, 11,13,14,20,34].

In this paper, we introduce a large-update primal-dual interior-point
algorithm for P∗(κ)-LCP based on a new family of kernel functions with
trigonometric barrier term. Using an elegant analysis, we show that our
algorithm enjoys O((1 + 2κ)

√
n log n log n

ε ) as the worst case complexity,
which coincides with the best known iteration complexity bound. Finally,
we gives some numerical results.

The paper is organized as follows: In Section 2, we recall some basic
concepts of interior-point methods and the central path for LCP. In Section
3, we first introduce a new kernel function, then we survey some properties
of this kernel function. In Section 4, we obtain the step size during an
inner iteration. The worst case iteration bound for the primal-dual IPMs
based on the new kernel function is presented in Section 5. We illustrate
the practical performance of the new proposed kernel function in Section
6. Some numerical results are presented in Section 7. Finally, we end the
paper by some concluding remarks in Section 8.

Some of the notations used throughout the paper are as follows: The
set of real vectors with length n, the set of nonnegative vectors and the
set of positive vectors are showed as Rn,Rn+ and Rn++, respectively. For a
given vector x ∈ Rn diagonal matrix of x is defined by X = diag(x). The
index set is denoted as J = {1, 2, . . . , n}. Also ‖ · ‖ denotes the 2-norm of a
vector. For two given vectors x and s, the vectors xs and x

s show that the
coordinate-wise operations on the vectors, i.e., whose components are xisi
and xi

si
, respectively. Furthermore, vmin is minimum components of the real

vector v. We say that f(t) = Θ (g(t)), if there exist positive constants ω1
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and ω2 so that ω1g(t) ≤ f(t) ≤ ω2g(t) satisfies for all t ∈ R++. We also say
f(t) = O (g(t)), if there exists a positive constant ω so that f(t) ≤ ωg(t),
for all t ∈ R++.

2 Central path and P∗(κ)-matrices

In this section, we focus on the central path for P∗(κ)-LCP and some prop-
erties of primal-dual IPMs and present a generic interior point algorithm
for LCP. Throughout this paper, without lose of generality, we assume that
the system (1) satisfies the Interior Point Condition (IPC), that is, there
exists a point (x0, s0) > 0, such that

Mx0 + q = s0,

which means that the interior of the feasible region is not empty.
The key idea of path following IPMs for LCP is to replace the last equa-

tion in (1), the so called complementarity condition with the parameterized
equation xs = µe, where µ is a real positive parameter and e denotes
the all-one vector of length n. Therefore, this replacement leads us to the
following system: 

s = Mx+ q,
xs = µe,
(x, s) > 0.

(2)

Since IPC holds and M is a P∗(κ) matrix, the parameterized system (2) has
a unique solution for any real positive parameter µ [29]. Let us, represent
the solution of system (2) by (x(µ), s(µ)). The set of all µ-centers, with
µ > 0, i.e., {(x(µ), s(µ)) : µ > 0} gives the homotopy path and it is called
the central path of the LCP [36]. It is shown that, if the parameter µ goes to
zero, the limit of the central path exists and satisfies the complementarity
condition and belong to the solution set of (1).
In what follows, we discuss how the algorithm computes the step length
in Newton method. Therefore, the system (2) can be converted to the
following system: {

−M∆x+ ∆s = 0,
S∆x+X∆x = µe− xs. (3)

The second equation in (3) is so-called the centering equation. By using
Corollary 2, the system (3) has a unique solution for any two positive
vectors x and s. System (3) can be easily rewritten as below:{

M̄dx + ds = 0,
dx + ds = v−1 − v, (4)
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where

d :=

√
x

s
, v :=

√
xs

µ
, (5)

dx :=
v∆x

x
, ds :=

v∆s

s
, (6)

and M̄ = DMD, with D = diag(d).
One can easily see that the right hand-side of the last equation in (4), which
so-called the scaled centering equation is equal to negative gradient of the
following scaled barrier function:

Ψc(v) :=

n∑
i=1

ψc(vi) =

n∑
i=1

(
v2i − 1

2
− log vi

)
,

where, vi denotes the i-th component of the variance positive vector v.
The scaled barrier function Ψc(v) has the following properties:

(i) Ψc(v) is strictly convex for v ∈ Rn++.

(ii) Ψc(v) attains its minimal value at v = e, i.e., Ψc(e) = 0.

We call ψc(t) a kernel function of the classical logarithmic barrier func-
tion. In the next proposition, some properties of the kernel function are
characterized.

Proposition 1. A function ψc : R++ → R+ is called a kernel function if
ψc satisfies the following conditions [1]:

(i) ψc(1) = ψ′c(1) = 0,

(ii) limt→0+ ψc(t) = limt→∞ ψc(t) = +∞,

(ii) ψc(t) is a strictly convex function for all t > 0.

From the above discussion, one may easily write:

Ψc(v) = 0⇔ v = e⇔ x = x(µ), s = s(µ).

Recently, Peng et al. in [29] used a new proximity function Ψ(v), such that
Ψ(v) =

∑n
i=1 ψ(vi) with ψ(1) = ψ′(1) = 0 and the function ψ(t) is a strictly

convex function for all t > 0. Therefore, the scaled centering equation in
(4) can be rewritten as below:

dx + ds = −∇Ψ(v). (7)
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Now, using equation (7), the system (4) may be rewritten as follows:{
−M∆x+ ∆s = 0,
S∆x+X∆s = −µv∇Ψ(v).

(8)

From Corollary 2, the system (8) has a unique solution (∆x,∆s) for any
two vectors (x, s) > 0. Moreover, one has:

∆x = 0, ∆s = 0⇔ v = e.

For the moment, we describe one step of the Algorithm 1. We start the
algorithm by proximity parameter τ , barrier parameter update θ, for any
θ ∈ [0, 1], and a strictly feasible point (x0, s0). Note that, at the begining
of the algorithm, the point (x0, s0) is in a τ neighborhood of the given
µ-center. The algorithm consists of the inner while loop and outer while
loop, which are called inner and outer iterations, respectively. Note that,
any outer iteration consists of update barrier parameter µ by (1−θ)µ, that
is, the parameter µ decreasing to (1−θ)µ for some θ ∈ [0, 1] and a sequence
of one or more inner iterations. Then, we solve the Newton system to derive
the unique search direction. The generic algorithm is as follows [29].

The choice of the barrier update parameter θ plays an important role
in the theory and practice of IPMs. For a constant θ, let θ = 1

2 , the
algorithm is called the large-update methods, while for the case when the θ
is depended on n, θ = 1√

n
, the algorithm is called the small-update methods.

Note that, iteration complexity bound of the algorithm for small-update
methods has the best known complexity, that is O(

√
n log n

ε ) in theory,
while the large update methods are practically more efficient [35].

3 The new kernel function

In this section, first a new class of kernel functions with trigonometric
barrier term is defined; then some properties of these function are studied.
The new kernel function is given by:

ψ(t) =
t2 − 1

2
− (
√

3− 1)p
∫ t

1

dx

(tan(h(x))− 1)p
, p ≥ 2, (9)

where

h(x) =
1 + x

4 + 2x
π. (10)

Note that when t → 0+, the function h(t) converges to π
4 . It follows that

limt→o+ ψ(t) = +∞. Moreover, we can easily see that limt→∞ ψ(t) = +∞.
These imply that the function ψ(t) given by (9) is a kernel function [1].
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Algorithm 1. Generic Primal-dual IPMs for LCP

Input
a proximity function Ψ(v)
a threshold parameter τ > 0
an accuracy parameter ε > 0
a barrier update parameter θ, 0 < θ < 1

begin
x := e; s := e;µ := 1; v := e;
while nµ > ε do

begin
µ := (1− θ)µ
while Ψ(v) > τ do
begin
x := x+ α∆x
s := s+ α∆s
v :=

√
xs
µ

end
end

end

To analyze Algorithm 1, we need the first three derivatives of the func-
tion (9), as:

ψ′(t) = t− (
√

3− 1)p

(tan(h(t))− 1)p
(11)

ψ′′(t) = 1 +
2(
√

3− 1)pπpM(t)

(4 + 2t)2(tan(h(t))− 1)p+1
(12)

ψ′′′(t) =
4(
√

3− 1)pπpM(t)

(4 + 2t)3(tan(h(t))− 1)p+2
K(t). (13)

where:

M(t) = 1 + tan2(h(t))

K(t) = −2(tan(h(t))− 1) +
2π

4 + 2t
tan(h(t)) (tan(h(t))− 1)

−(p+ 1)πM(t)

4 + 2t
. (14)

One can easily see that ψ(1) = ψ′(1) = 0. Therefore, we can denote the
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function ψ(t) given by (9) as below:

ψ(t) =

∫ t

1

∫ ξ

1
ψ′′(ζ)dζdξ. (15)

We define a norm-based proximity measure δ(v) as:

δ(v) :=
1

2
‖∇Ψ(v)‖ =

1

2

√√√√ n∑
i=1

(ψ′(vi))2, v ∈ Rn++. (16)

Note that the function ψ(t) defined by (9), is a decreasing function in (0, 1],
and an increasing function in the interval [1,+∞). In the next lemma, we
derive some important properties of the new kernel function.

Lemma 2. For the function h(t), defined by (10), let t > 0. Then, we
have:

tan(h(t)) ≥ t+ 2

2π
.

Proof. First, we define a function g(t) as:

g(t) := tan(h(t))− t+ 2

2π
.

Therefore, one has:

g′(t) =
2π

(4 + 2t)2
(1 + tan2(h(t)))− 1

2π

=
2π

(4 + 2t)2 cos2(h(t))
− 1

2π
=

1

cos2(h(t))

[
2π

(4 + 2t)2
− 1

2π
cos2(h(t))

]
.

For all x ∈ [0, π], we have:

sin(
π

2
− x) = cos(x),

sin(x) ≤ x,

it follows that

g′(t) =
1

cos2(h(t))

[
2π

(4 + 2t)2
− 1

2π
sin2(

π

2
− h(t))

]
≥ 1

cos2(h(t))

[
2π

(4 + 2t)2
− 2π

(4 + 2t)2

]
= 0.

The lemma follows from the fact that g(0) > 0.
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Note that for all t > 0, tan(h(t)) > 1. Next lemma shows some proper-
ties of the new kernel function.

Lemma 3. For the function ψ(t), defined by (9), we have:

i) ψ′′(t) > 1, ∀ t > 0,

ii) tψ′′(t)− ψ′(t) > 0, ∀ t > 1,

iii) tψ′′(t) + ψ′(t) > 0, ∀ 0 < t < 1,

iv) ψ′′′(t) < 0, ∀ t > 0.

Proof. The first item easily follows from,

ψ′′(t) = 1 +
2(
√

3− 1)pπpM(t)

(4 + 2t)2(tan(h(t))− 1)p+1
≥ 1.

Since,

tψ′′(t)− ψ′(t) =
(
√

3− 1)p

(tan(h(t))− 1)p+1

[
2πptM(t)

(4 + 2t)2
+ tan(h(t))− 1

]
> 0,

the second item is concluded. To prove the third item, we have

tψ′′(t) + ψ′(t) =
(
√

3− 1)p

(tan(h(t))− 1)p+1

[
2πptM(t)

(4 + 2t)2
− tan(h(t)) + 1

]
.

We consider the expression in the bracket as function k(t) such that:

k(t) :=
2pπt

(2t+ 4)2
(
1 + tan2(h(t))

)
− tan(h(t)) + 1.

The first derivative of k(t) is as follows

k′(t) = M(t)
2π

(4 + 2t)3

[
p(2t+ 4)− 4pt+

4πpt

4 + 2t
tan(h(t))− (2t+ 4)

]
≥ M(t)

2π

(4 + 2t)3
[−pt+ 4p− 2t− 4]

≥ M(t)
2π

(4 + 2t)3
[3p− 2t− 4] ≥ 0,

where, the first inequality is due to Lemma 2 and the last inequality follows
from the fact that p ≥ 2 and t ∈ (0, 1]. This implies that k(t) is an
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increasing function for all t ∈ (0, 1]. From k(0) = 0, we conclude that for
all t ∈ (0, 1],

tψ′′(t) + ψ′(t) > 0.

Using the fact that for all t > 0, M(t) > tan(h(t))(tan(h(t))−1) and p ≥ 2,
we conclude that K(t) < 0 for all t > 0. Therefore, one has ψ′′′(t) < 0 for
all t > 0. It completes the proof.

In what follows, we construct the exponential convexity (e-convexity)
property of the new kernel function. This property plays an important role
in the analysis of the primal-dual algorithm.

Lemma 4. (Lemma 2.1.2 in [29]) Suppose that function ψ(t) is a twice
differentiable function, for all t > 0. Therefore, the following properties are
equivalent:

i) ψ(
√
t1t2) ≤ 1

2(ψ(t1) + ψ(t2)), ∀ t1, t2 > 0.

ii) ψ′(t) + tψ′′(t) ≥ 0, ∀ t > 0.

iii) ψ(eξ) is a convex function.

As a consequence of Lemmas 3, and 4, the kernel function ψ(t) defined
by (9) has the e-convexity property.

Lemma 5. For the new kernel function ψ(t) defined by (9), one has:

i) 1
2(t− 1)2 ≤ ψ(t) ≤ 1

2ψ
′(t)2, for all t > 0.

ii) Ψ(v) ≤ 2δ(v)2.

iii) ‖v‖ ≤
√
n+

√
2Ψ(v) ≤

√
n+ 2δ(v).

Proof. The proof is a straightforward result of (15), Lemma 3 and Lemma
3.4 in [30].

As a consequence of the second part of Lemma 5, one has the following
corollary.

Corollary 3. Suppose that Ψ(v) ≥ 1, then one has

δ(v) ≥ 1√
2
.
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For the moment, we focus on the growth behavior of the proximity
function Ψ(v) during an iteration of Algorithm 1. Suppose that at the
start of each outer iteration, just before the µ-update we have Ψ(v) ≤ τ .
Due to the update of µ, the vector v is divided by the factor

√
1− θ, with

0 ≤ θ < 1, which in general leads to an increase in the value of Ψ(v).
Then, during the subsequent inner iteration, Ψ(v) decreases until it passes
the threshold τ again. In what follows, we present two lemmas, which are
important in deriving the iteration complexity bound.

Lemma 6. Suppose that ψ(t) is given by (9) and β ≥ 1. One has

ψ(βt) ≤ ψ(t) +
β2 − 1

2
t2.

Proof. Let

ψ(t) =
t2 − 1

2
+ p(t),

where the function p(t) is defined as follows

p(t) = −(
√

3− 1)p
∫ t

1

dx

(tan(h(x))− 1)p
.

Then, we have

ψ(βt)− ψ(t) =
β2 − 1

2
t2 + p(βt)− p(t).

Since β ≥ 1, to complete the proof, it suffices to show that the function
p(t) is a decreasing function. It immediately follows from,

p′(t) = − (
√

3− 1)p

(tan(h(x))− 1)p
< 0.

This completes the proof.

Lemma 7. Suppose that 0 < θ < 1 and v+ = v√
1−θ . One has

Ψ(v+) ≤ Ψ(v) +
θ

2(1− θ)
(2Ψ(v) + 2

√
2nΨ(v) + n).

Proof. Using Lemma 6 with β = 1√
1−θ , we have

Ψ(βv) ≤ Ψ(v) +
1

2

n∑
i=1

(β2 − 1)v2i = Ψ(v) +
θ‖v‖2

2(1− θ)
.

Now, from the third item of Lemma 5, the statement of the lemma follows.
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4 An estimation for the step size

In this section, we compute the largest possible value for the step size = α
during an inner iteration. After a damped step we have:

x+ = x+ α∆x, s+ = s+ α∆s.

Using (6), we obtain:

x+ =
x

v
(v + αdx), s+ =

s

v
(v + αds).

This implies that,

v2+ =
x+s+
µ

= (v + αdx)(v + αds).

From the fact that M is the P∗(κ) matrix and (8), i.e. for ∆x ∈ Rn,
M∆x = ∆s, one has:

(1 + 4κ)
∑

i∈J+(x)

(∆xi)∆si +
∑

i∈J−(x)

∆xi∆si ≥ 0,

where, J+(x) = {i ∈ J : ∆xi∆si ≥ 0} and J−(x) = J − J+(x). Since

dxds =
v2∆x∆s

xs
=

∆x∆s

µ
,

and µ > 0, we have

(1 + 4κ)
∑

i∈J+(x)

(dx)i(ds)i +
∑

i∈J−(x)

(dx)i(ds)i ≥ 0. (17)

For notational convenience, we define the following notations:

δ := δ(v), σ+ :=
∑

i∈J+(x)

(dx)i(ds)i, σ− := −
∑

i∈J−(x)

(dx)i(ds)i.

Therefore, the equation (17) can be rewritten as below:

(1 + 4κ)
∑

i∈J+(x)

(dx)i(ds)i +
∑

i∈J−(x)

(dx)i(ds)i = (1 + 4κ)σ+ − σ− ≥ 0. (18)

To estimate the bound for ‖dx‖ and ‖ds‖, we need the following technical
lemma.

Lemma 8. One has σ+ ≤ δ2 and σ− ≤ (1 + 4κ)δ2.
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Proof. From definition of σ+, σ− and δ, one has

σ+ =
∑
i∈J+

(dx)i(ds)i ≤
1

4

∑
i∈J+

((dx)i + (ds)i)
2 ≤ 1

4

∑
i∈J

((dx)i + (ds)i)
2 = δ2.

From the fact that M is the P∗(κ) matrix and using (18), one can easily
see that

σ− ≤ (1 + 4κ)σ+ ≤ (1 + 4κ)δ2.

This completes the proof.

Upper bounds for ‖dx‖ and ‖ds‖ are proved in the following lemma.

Lemma 9. The inequalities ‖dx‖ ≤ 2
√

1 + 2κδ and ‖ds‖ ≤ 2
√

1 + 2κδ
hold.

Proof. The proof is similar to the Lemma 4.4 in [30]. We just restate it
here. From the fact that

∑
i∈J(dx)i(ds)i = σ+ − σ− and definition δ, one

has

2δ = ‖dx + ds‖ =

√√√√ n∑
i=1

((dx)i + (ds)i)2 =

√√√√ n∑
i=1

((dx)2i + (ds)2i ) + 2(σ+ − σ−).

Due to (17), one has

2δ ≥

√√√√ n∑
i=1

((dx)2i + (ds)2i ) + 2

(
σ−

1 + 4κ
− σ−

)

=

√√√√ n∑
i=1

((dx)2i + (ds)2i )−
8κ

1 + 4κ
σ−.

Hence, we have

4δ2 +
8κ

1 + 4κ
σ− ≥

n∑
i=1

((dx)2i + (ds)
2
i ).

From Lemma 8, we obtain

4(1 + 2κ)δ2 ≥ 4δ2 +
8κ

1 + 4κ
σ− ≥

n∑
i=1

((dx)2i + (ds)
2
i ).
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This implies that

‖ds‖ ≤
n∑
i=1

((dx)2i + (ds)
2
i ) ≤ 2

√
1 + 2κδ.

Similarly, we can prove that ‖ds‖ ≤ 2
√

1 + 2κδ. This completes the proof
of the lemma.

Now, using the e-convexity property of the function Ψ(v), one has

Ψ(v+) = Ψ
(√

(v + αdx)(v + αds)
)
≤ 1

2
[Ψ(v + αdx) + Ψ(v + αds)] .

Let

f(α) = Ψ(v+)−Ψ(v),

f1(α) =
1

2
[Ψ(v + αdx) + Ψ(v + αds)]−Ψ(v). (19)

In what follows, we derive an upper bound on the value of f(α) during an
inner iteration. To this end, note that f1(α) is an upper bound of f(α),
that is f(α) ≤ f1(α), and f(0) = f1(0) = 0.
Using the definition of f1(α), we have

f ′1(α) =
1

2

n∑
i=1

(
ψ′(vi + αdxi)dxi + ψ′(vi + αdsi)dsi

)
.

Using (16) and the second equation in (8), we may write:

f ′1(0) =
1

2
∇Ψ(v)T (dx + ds) = −1

2
∇Ψ(v)T∇Ψ(v) = −2δ(v)2.

Furthermore, we have

f ′′1 (α) =
1

2

n∑
i=1

(
ψ′′(vi + αdxi)d

2
xi + ψ′′(vi + αdsi)d

2
si

)
.

Lemma 10. (Lemma 5.5 in [2]) The following inequality holds:

f ′′1 (α) ≤ 2(1 + 2κ)δ2ψ′′(vmin − 2α
√

1 + 2κδ).

Lemma 11. Suppose that ρ : [0,∞) → (0, 1] is the inverse of the func-
tion −1

2ψ
′(t) in the interval (0, 1]. Thus, the largest possible value for α

satisfying f ′(α) ≤ 0 is given by

ᾱ =
1

2
√

1 + 2κδ

(
ρ(δ)− ρ(δ +

δ√
1 + 2κ

)

)
. (20)
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Proof. From e-convexity property of function ψ(v), P∗(κ) property of M ,
Lemma 8, Lemma 9 and Lemma 5.6 in [29], the proof is completed.

Lemma 12. (Lemma 5.8 in [2]) Suppose that ᾱ is given by (20). One has

ᾱ ≥ 1

(1 + 2κ)ψ′′(ρ(δ + δ√
1+2κ

))
. (21)

In what follows, we use the notation

α̃ =
1

(1 + 2κ)ψ′′(ρ(δ + δ√
1+2κ

))
, (22)

and we will use α̃ as the default step size. Lemma 12 implies that α̃ ≤ α.

Lemma 13. (Lemma 3.7 in [32]) Suppose that ᾱ is given by (21). Then,
for α satisfying α ≤ ᾱ, we have:

f(α) ≤ −αδ2.

In the next lemma, we compute the amount of decrease in the proximity
function during an inner iteration.

Lemma 14. Suppose that Ψ(v) ≥ 1 and ρ : [0,∞) → (0, 1] is the inverse
of the function −1

2ψ
′(t) in the interval (0, 1], and α̃ is defined as in (22).

Then, one has

f(α̃) ≤ −Θ

(
δ
p−1
p

(1 + 2κ)p

)
. (23)

Proof. From Lemma 13 and the fact that α̃ ≤ α, we have f(α̃) ≤ −α̃δ2.
Now, we compute the inverse function −1

2ψ
′(t), for all t ∈ (0, 1]. By solving

the equation −1
2ψ
′(t) = s for t, we conclude that:

−

[
t−

( √
3− 1

tan(h(t))− 1

)p]
= 2s.

This implies that ( √
3− 1

tan(h(t))− 1

)p
≤ 2s+ 1,
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where, the last inequality is obtained from the fact that t ≤ 1. Now, putting
t = ρ(2δ), we get 4δ = −ψ′(t). Thus, we have( √

3− 1

tan(h(t))− 1

)p
≤ 4δ + 1.

We note that for all 0 < t ≤ 1, tan(h(t)) ∈ (1,
√

3]. Therefore,
√
3−1

tan(h(t))−1 ≥
1. This implies that

√
3− 1

tan(h(t))− 1
≤ (4δ + 1)

1
p . (24)

It follows that

1

tan(h(t))− 1
≤ (4δ + 1)

1
p

√
3− 1

≤ 2(4δ + 1)
1
p . (25)

Thus, we have

ψ′′(t) = 1 +
2πp

(
1 + tan2(h(t))

)
(4 + 2t)2(tan(h(t))− 1)

( √
3− 1

tan(h(t))− 1

)p
≤ 1 +

4πp

(4 + 2t)2
(1 + tan2(h(t)))(4δ + 1)

p+1
p .

Since (4+2t)2 ≥ 16 for all 0 < t ≤ 1 and 1+tan2(h(t)) ≤ 4, it follows that:

ψ′′(t) ≤ 1 + pπ(4δ + 1)
p+1
p . (26)

Using (26), we obtain a lower bound for α̃, with t ∈ (0, 1]

α̃ =
1

(1 + 2κ)ψ′′(t)
≥ 1

(1 + 2κ)
(

1 + pπ(4δ + 1)
p+1
p

)
= Θ

(
1

(1 + 2κ)pδ
p+1
p

)
,

which implies that

f(α̃) ≤ − δ2

(1 + 2κ)ψ′′(ρ(2δ))
≤ −Θ

(
δ
p−1
p

(1 + 2κ)p

)
.

This proves the lemma.

A direct consequence of applying the second part of Lemma 5 to (23)
is as follows

f(α̃) ≤ −Θ

(
δ
p−1
p

(1 + 2κ)p

)
≤ −Θ

(
Ψ
p−1
2p

(1 + 2κ)p

)
. (27)
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5 Iteration complexity

In this section, we proceed by computing the worst case total iteration
complexity bound for Algorithm 1, based on the new measure function
Ψ induced from kernel function consisting of trigonometric function in its
barrier term as defined in (9) for large-update methods. To this end, using
Lemma 7 and just after reducing µ to (1 − θ)µ with θ ∈ (0, 1), one may
write

Ψ(v+) ≤ Ψ(v) +
θ

2(1− θ)
(2Ψ(v) + 2

√
2nΨ(v) + n). (28)

From the structure of Algorithm 1, and at the begining of an outer iteration
and just before updating the parameter µ, we have Ψ(v) ≤ τ . Therefore,
from (28) it is easy to see that the proximity function Ψ(v) exceeds the
threshold τ after the µ-update. Therefore, we need to compute the num-
ber of inner iterations that are required to return the iterates back to the
situation where measure function Ψ(v) ≤ τ after the µ-update. In what
follows, we represent the value of proximity function Ψ(v) after updating
µ by Ψ0, and the subsequent values by Ψj , for all j = 1, . . . , L − 1, where
L is the total number of inner iterations performed in an outer iteration.
From (28) and the fact that proximity function Ψ(v) ≤ τ , it implies that

Ψ0 ≤ τ +
θ

2(1− θ)
(2τ + 2

√
2nτ + n). (29)

Due to (27), the decreasing of Ψ in any inner iteration is denoted by

Ψj+1 ≤ Ψj − ς∆Ψj , j = 0, 1, . . . , L− 1, (30)

where ς is some positive constant and ∆Ψj , is denoted by

∆Ψj =
Ψ
p−1
2p

(1 + 2κ)p
. (31)

In the sequel, we recall the following technical lemma which helps us to state
the inner iteration complexity result in an outer iteration. Furthermore,
one can find its proof in [29].

Lemma 15. Given α ∈ [0, 1] and t ≥ −1, one has

(1 + t)α ≤ 1 + αt.

The worst case upper bound for the total number of inner iteration in
an outer iteration is given by the following theorem.
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Theorem 1. Suppose that τ = O(n) ≥ 1. If L represent the total number
of inner iterations in an outer iteration of the Algorithm 1, one has

L ≤ 1 +
2p2(1 + 2κ)Ψ

p+1
2p

0

(p− 1)ς
. (32)

Proof. From definition of L, i.e., ΨL−1 > τ and ΨL ≤ τ , and (30), for any
j = 0, 1, . . . , L− 1, we have

0 ≤ Ψ
p+1
2p

j+1 ≤

(
Ψj − ς

Ψ
p−1
2p

p(1 + 2κ)

) p+1
2p

= Ψ
p+1
2p

j

(
1− ς Ψ

− p−1
2p

p(1 + 2κ)

) p+1
2p

≤ Ψ
p+1
2p

j

(
1− ς(p+ 1)Ψ

p−1
2p

2p2(1 + 2κ)

)
= Ψ

p+1
2p

j − ς(p+ 1)

2p2(1 + 2κ)
, (33)

where the last inequality is obtained from Lemma 15. Using (33) subse-
quently, we obtain

Ψ
p+1
2p

j+1 ≤ Ψ
p+1
2p

0 − j(p+ 1)ς

2p2(1 + 2κ)
.

For j = L− 1, we have

0 ≤ Ψ
p+1
2p

L ≤ Ψ
p+1
2p

0 − (L− 1)(p+ 1)

2p2(1 + 2κ)
ς,

which implies that

L ≤ 1 +
2p2(1 + 2κ)Ψ

p+1
2p

0

(p− 1)ς
.

This completes the proof.

Remark 1. For the large-update method, we have τ = O(n) and Θ = Θ(1).

As a consequence of Remark 1 and (29), we conclude that Ψ0 = O(n).
Therefore, Theorem 1 implies the following upper bound for the total num-
ber of inner iterations for an outer iteration as

L ≤
⌈

Θ

(
1 + p(1 + 2κ)Ψ

p+1
2p

0

)⌉
= O

⌈
p(1 + 2κ)n

p+1
2p

⌉
. (34)
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Theorem 2. Suppose that P∗(κ)-LCP defined by (1). Then for large-
update methods the total number of iterations to get an ε-solution, i.e.,
a solution that satisfies xT s = nµ ≤ ε, is bounded by

O
(

(1 + 2κ)pn
p+1
2p log

n

ε

)
.

Proof. Lemma I.36 in [35] implies that the total number of outer iterations
for getting nµ ≤ ε are bounded above by O

(
1
θ log n

ε

)
. Moreover, the total

number of iterations for Algorithm 1 is obtained from multiplying the total
number of inner and outer iterations. Hence, we may derive the following
total number of iterations to get an ε-solution, i.e., a solution that satisfies
xT s = nµ ≤ ε, as follows:

O
(

(1 + 2κ)pn
p+1
2p log

n

ε

)
.

This follows the result.

So far, this bound significantly improves the iteration bound of large
update primal-dual interior point methods based on the trigonometric ker-
nel functions obtained in [9]. The iteration complexity for the small-update
methods is straightforward and we left it for the interested readers.

6 Numerical results

Although our main focus in this paper is finding the worst case complexity
of Algorithm 1 based on the new considered kernel function with trigono-
metric barrier term for linear complementary problems, here we present
some numerical results of performing Algorithm 1 with the following eight
kernel functions introduced in the literature and new proposed kernel func-
tion with p = {2, 5, 10}. The numerical results are obtained using MAT-
LAB 7.6.0 (R2008a) on a PC with CPU 2.0 GHz and 2 G RAM memory.
Without loss of generality, we take the accuracy parameter ε = 10−8, the
threshold parameter τ = 3, the parameter µ = 1 and p = {2, 5, 10} in all
experiments. In Table 1, we present eight kernel functions presented in the
literature. We consider the following problems:

Problem 1. (Lee’s example in [23]) For this test problem, we have:

M =

(
0 1
−2 0

)
, q =

(
2
3

)
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Table 1: Eight kernel functions.

Kernel function ψi(t) Ref

ψ1(t) = t2−1
2 + t−1 − 1 [24]

ψ2(t) = t2−1
2 + 6

π tan( 1−t
2+4tπ) [10]

ψ3(t) = t2−1
2 − log(t) + 1

8 tan2( 1−t
2+4tπ) [32]

ψ4(t) = t2−1
2 + 4

π cot( πt
1+t) [17]

ψ5(t) = t2−1
2 + (1t − 1) e

1
t−1

e [24]

ψ6(t) = t2−1
2 −

∫ t
1 e

tan( π
2+2x

)−1dx [31]

ψ7(t) = t2−1
2 + e(e

4( 1t−1)−1)−1
4 [23]

ψ8(t) = t2−1
2 + e

1
t−1

e [24]

Table 2: Number of iterations for Problem 1.

θ ψ1 ψ2 ψ3 ψ4 ψ5 ψ6 ψ7 ψ8 ψ9 ψ10 ψ11

0.1 27 25 22 126 18 22 18 20 20 19 17

0.2 27 24 21 99 18 21 18 18 19 19 17

0.3 26 23 21 99 18 20 17 18 19 18 17

0.4 26 22 21 75 17 20 17 19 18 18 16

0.5 25 21 20 77 17 19 17 18 18 17 16

0.6 24 20 20 58 18 19 16 17 17 16 16

0.7 23 19 19 58 17 18 16 18 17 15 15

Algorithm 1 starts with initial point (x0; s0) = (0.4 0.45 2.45 2.2). An
optimal solution of Problem 1 is given by:

(x∗; s∗) = (0 0 2.0500 3.1000).

Numerical results of applying Algorithm 1 based on the kernel functions
given in Table 1 and new proposed kernel function with different values of θ
for test Problem 1 are given in Table 2. In Tables 2-5, the functions ψ9, ψ10

and ψ11 are new proposed kernel function with p = {2, 5, 10}, respectively.
Moreover, in Tables 2-5, for moment we present kernel function ψi(t) for
i ∈ {1, 2 · · · , 11} as ψi.

Problem 2. Consider a randomly generated P∗(0)-LCP test problem. We
select matrix M as M = AAT , where A = rand(n, n) and use the barrier
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Table 3: Number of iterations for Problem 2.

n ψ1 ψ2 ψ3 ψ4 ψ5 ψ6 ψ7 ψ8 ψ9 ψ10 ψ11

2 9 9 9 11 12 9 10 8 9 8 8

5 17 22 17 30 20 24 19 14 16 13 13

10 20 40 18 72 24 30 22 16 19 17 15

20 38 25 20 89 49 37 29 32 35 32 27

50 42 59 26 175 59 45 38 90 42 41 39

100 47 69 40 425 138 48 46 181 46 44 41

200 56 84 53 568 355 57 75 235 63 58 51

Table 4: Number of iterations for Problem 3.

n ψ1 ψ2 ψ3 ψ4 ψ5 ψ6 ψ7 ψ8 ψ9 ψ10 ψ11

2 30 31 38 38 132 35 32 32 34 32 29

5 219 206 211 286 375 555 245 610 231 211 191

10 1436 1494 1041 1865 831 705 749 1651 737 715 701

parameter θ = 0.5. In this case, the starting point is selected as x0 = s0 = e
and q = s−Mx.

Problem 3. (Murty’s example in [40]) In this case, the parameter θ and
starting point are chosen as θ = 0.5 and x0 = s0 = e. Also,

M =


1 2 2 · · · 2
0 1 2 · · · 2
0 0 1 · · · 2
...

...
... · · ·

...
0 0 0 · · · 1

 , q =


−1
−1
−1
...
−1


Problem 4. (Fathi’s example in [12]) In this problem, the algorithm starts
with initial point as x0 = s0 = e and

M =

 1 2 2
2 5 6
2 6 9

 , q =

 −1
−1
−1
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Table 5: Number of iterations for Problem 4.

θ ψ1 ψ2 ψ3 ψ4 ψ5 ψ6 ψ7 ψ8 ψ9 ψ10 ψ11

0.1 87 35 48 92 35 47 75 35 38 36 34

0.2 99 35 41 95 43 50 107 36 40 38 35

0.3 100 34 42 136 43 66 59 44 37 33 31

0.4 116 33 36 88 34 49 33 34 34 33 31

0.5 47 35 37 62 48 49 44 35 37 35 33

0.6 63 29 33 74 68 35 28 29 33 31 28

0.7 63 39 35 57 61 47 75 39 38 35 34

Remark 2. For all test problems, the step size is computed as:

α̃ =
1

(1 + 2κ)ψ′′(ρ(2δ))
. (35)

Based on the obtained results in this section, we conclude that Algo-
rithm 1 with the new proposed kernel function has better results than the
others kernel functions.

7 Concluding remarks

In this paper, we proposed a primal-dual interior point algorithm for P∗(κ)-
LCP based on a new family of kernel functions consisting of a trigono-
metric function in its barrier term in large neighborhood of the central
path. Using the feasibility condition to initial point, by a simple analy-
sis we proved that our algorithm has the worst case iteration complexity

bound for large-update method as O
(

(1 + 2κ)pn
p+1
2p log n

ε

)
for p ≥ 2. Fi-

nally, with p = O(log n) we obtain complexity bound of the algorithm as
O
(
(1 + 2κ)

√
n log n log n

ε

)
.
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