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Determining optimal value of the shape
parameter c in RBF for unequal distances
topographical points by Cross-Validation

algorithm

Mohammadreza Yaghouti* and Habibe Ramezannezhad Azarboni

Faculty of Mathematical Sciences, University of Guilan, Rasht, Iran
Emails: Yaghouti@guilan.ac.ir, Heral_ramezannezhad@yahoo.com

Abstract. Several radial basis function based methods contain a free shape
parameter which has a crucial role in the accuracy of the methods. Perfor-
mance evaluation of this parameter in different functions with various data
has always been a topic of study. In the present paper, we consider study-
ing the methods which determine an optimal value for the shape parameter
in interpolations of radial basis functions for data collections produced by
topographical images that are not necessarily in equal distances. The Cross-
Validation method is picked out of several existing algorithms proposed for
determining the shape parameter.
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1 Introduction

During the last three decades, methods using radial basis functions have
been used in the fields of geophysics, geology, reconstruction of image,
measurement from an aerial map, solving ordinary or partial differential
equations including nonlinear equations with shock waves, heat transfer,
shallow water equations to simulate the tide, release without heat, trans-
port equation and the parabolic and elliptic partial differential equations
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[4,6,12,14,16]. The radial basis functions are radially symmetric with re-
spect to their centers and their shapes remain invariant in all dimensions.
The centers themselves do not have to be specially distributed in such a
way where interpolation data are difficult to obtain [6]. Moreover, the ap-
proximation accuracy provided by interpolant can be adjusted using the
parameters known as shape parameters c [3,12]. In all radial basis function
topics, it is crucial to determine the best value of ¢, which in turn leads to
the most accurate approximation of the original function [10]. For Hardy’s
MQ function, this value can be defined as ¢ = 0.815d, where d is the dis-
tance from the nearest neighborhood [5]. There are several methods for
obtaining d. One of them is based on a circle area of diameter D which
contains grid points. If we divide this circle into n equal parts, each part
will be as A = wD?/(4n). If these areas are circles of diameter D//n, one
may use them to approximate the shortest distance between two neighbor-
hoods. Frank has used the formula R = 1.25D/y/n. In fact, he used the
coefficient 1.25 instead of 0.815. All these methods are based on grid points
(zi,y:) [L1,15]. Although these values are good for initial estimations, but
they do not always provide the best results [15]. Foley and Carlson have
proposed a method by studying the statistical properties, such as quality
of scattering and obtaining the RMS error. They did this by different func-
tions and concluded that the value of ¢ depends on the function which is
approximated [8]. Carlson and Foley showed that the optimal value of ¢
is independent of the number of grid points and their distribution. They
have recommended using the same value of ¢ both for the multiquadric and
inverse multiquadric interpolants. Rippa in [15] showed that this is true in
many cases, but in some ones, the optimal value of ¢ for a specific function
is different for various data [1]. He showed that the accuracy of compu-
tation is also significand in determining the optimal value of ¢. Moreover,
he defined the optimal value of ¢ as the value minimizing RMS error. He
found further the general behavior of the RMS error graph is similar for
their multiquadric, inverse multiquadric and Gaussian interpolants. In all
the proposed methods, paying attention to the quality of data scattering
and using binary precision, are significant in results, otherwise, the validity
of results might fall in jeopardy. In [7], the authors provided values for the
parameter ¢, based on estimations. Kansa obtained optimal parameter c
based on the root least squares [7], but Rippa showed that in this method,
no attention is paid to the Runges phenomenon [9].

Radial basis functions are an extension of transitional univariate spline
functions to multivariate spline functions [%, 13]. In general form, they are
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defined as below

n

s(x) = Z)\itp(ri); ri = ||z —xill, @2 €RY, (1)
i=1
where ||.|| is a norm and ¢ : Rt — R is a radial basis function [13]. Some

radial basis functions are presented in Table 1.

Table 1: Some radial basis functions

Function name Function form
Maltiquadric (MQ) V2 4+ ¢2
Inverse Maltiquadric (IMQ) 1/vVr2+¢?
Gaussian (GA) exp(—(cr)?)
Thin Plate Splines (TSP) r2logr
Triharmonic |73

Let f be a known function in the grid points z;, then, one can con-
sider an interpolation function for f so that the following interpolational
conditions are satisfied:

s(xi) = f(z), 1=1,2,...,n. (2)

By choosing a radial basis function and applying the interpolational condi-
tions, we have:

fla) = Ne(lej =), j=12,....n, (3)
=1

where () is a radial basis function and the unknown coefficients \; i =
1,2,...,n, should be determined. Equation (3) is equivalent to solve the
following system of linear equations:

AN =1, (4)

where Aj; = ¢(||z; — z||) and b; = f(z;).

In this article, we review the determination of the optimum c for dis-
similar interval data. Here, we proposed an algorithm which is capable of
providing the best value of ¢ for distinct distance points. A similar method
is achieved by Rippa in [10]. Although this method has high computational
costs, it is able to suggest the optimal amount of ¢ with a high precision. In
the second part of this article, we have defined Cross-Validation error and
expressed an algorithm for it. In the third section, some numerical results
on different data are given. Finally, the conclusions are given.
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2 Cross-Validation error and process of choosing
c

Cross-Validation concept can be explained as follows. Let us consider a
data set such as p = {z1,22,...,2,}. Now, if a datum like z; is omitted
from the set p, a new p_; set is obtained which is defined as follows:

P—i = {(1}1, ey Li—1, Tj41, - - .,xn},

construct the Meta model with p_; and use x; as validate point. Also the
absolute error at x; is denoted by

ej = f(x;) = fwi@y)l, i=12,....n, j=12,...,n, j#i (5)

where f_i is the function corresponding the points in p_;. Let A =z — x;,
then by (5) we have to solve a linear system A\ = e, where the coefficient
matrix A is defined in Section 1.

After N times computation of e; such that N < n, the Cross-Validation
RMS error can be obtained as following:

N o2
RMSECT‘OSS = Zz]:\[lez (6)

When there are enough sample points, the Cross-Validation error gets
closer to the prediction error. Since all f_i(xj) are functions of ¢, the result
obtained from RMSE ! in the Cross-Validation method can be denoted as
RMScyoss. It is the cost function which we need to find an appropriate c.

The following algorithm has been used to determine the shape param-
eter in order to demonstrate its validity for our data that are not in equal
distances. In Step 1, the distance between sample points influences the
location of the critical value, so we suggest the initial value of the average
d;, that is the minimum distance between z; and other sample points.

Cprimary = Average(d;).

'Root mean square error
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Algorithm: The process of choosing ¢

Step 1: Choose an initial value for c.

Step 2: Take c as variable, and use (5) as the cost function.

Step 3: Look for the trend of error, and determine whether to increase
or decrease c.

Step 4: Stop until the error is no smaller than e(tolerance), and take
the current ¢ as the solution of the cost function.

3 Numerical results

A major problem with civil engineers always is to measure distant points
on which little data is available, such as the points which are located across
a valley and are so hard to reach due to the impassability of the area, and
are not necessarily scattered regularly. Due to the radial characteristic of
the radial basis functions, we can define a more appropriate procedure for
such points.

The first data belong to the map of a valley located near the city of
Kerman. Using AutoCAD, 81 grid points have been taken out of this map.
Figure 1 shows a topographic map of the area.

Figure 1: Topographic map of the valley.

Figure 2(a) is constructed from Figure 1 by MATLAB. The results of
interpolation of radial basis functions for the valley is presented in Figure
2. The data for the second examples is taken from Figure 3 which is a set

original image result of RBF

a b

Figure 2: Figure (a) is a result of Figure 1 by MATLAB and Figure (b) is
an interpolation of radial basis function.
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of 3721 points [2].

Figure 3: A surf of volcano.

By applying our proposed algorithm to this example, we have the suit-
able interpolation of radial basis functions of these data. The result of
interpolation of radial basis functions for the volcano is presented in Figure
4.

original image result of RBF

Figure 4: The result of Figure 3 by MATLAB (left) and interpolation of
radial basis function (right).

Also, two radial basis functions and parameter values ¢ having the lowest
Cross-Validation error are presented in Table 2.

Table 2: Numerical result of Figures 1 and 3.

Radial Basis Function ¢ value RMS error Data
e=(er)? 1.493 l4e —7 Valley
e (er)? 0.2336 3.7e — 7 Volcano

(2 +r2)P, B=-35 0.1852 1.2¢ — 5 Valley
(2 +7r?)P, B=-35 1.0751 2.5¢ — 5 Volcano

Finally, we have used this algorithm to design three-dimensional por-
traits of models or animations. We used pixels of an image instead of the
heights used in geographic regions and presented three-dimensional images
of a two-dimensional image by use of classical RBF interpolation where the
parameter c is chosen by the process introduced in Section 2.
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Figure 5: Two and three-dimensional images, left and right respectively.

The imread command in MATLAB software was used to obtain the pixel
data. A total number of 2916 pixels were used in this image. The results
approve the accuracy of this algorithm, as seen in Figure 5 and table 3.

Table 3: Numerical result of Figure 5.

Radial Basis Function c¢ value RMS Error
e—(er)? 2.43 2.8¢ — 7
(247128, B=-35 0.57 1.3¢ — 5

4 Conclusion

We have utilized Cross-Validation algorithm to pick out the best shape
parameter ¢ in RBF using two types of data. In the first type, the distance
between geographical points was different, but in the second type it was
equal. The pixels in the image are equal in both forms and the results are
favorable.
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